BUTTONS

by

Neysa Carpenter

Sonoma State University
INTRODUCTION

The buttons analyzed in this chapter were recovered during the 1979 archaeological excavations of the Golden Eagle Hotel and adjacent urban commercial enterprises in Sacramento. They were from a variety of contexts, dating from 1858 to 1878.

INTERPRETIVE POTENTIAL

The interpretive potential of buttons recovered from historic sites has often been overlooked by archaeologists. Because textiles are seldom preserved in a recognizable form underground, buttons are usually all that remain to indicate fashions worn by a site's occupants. Button typology can be used as a tool for dating, for determining social and economic status, and as an aid in reconstructing demographic profiles.

Assemblages of buttons show patterns of types that reflect changes in fashion and availability over the years. Although they were frequently cut off worn garments and "recycled" onto new clothing, when found in quantities in an archaeological context, buttons may provide a clue to dating. Methods of button manufacture changed dramatically during the course of the 19th century, as mass-manufacturing and distribution methods came to replace handwork and cottage industry. Patent dates of the various button types can often aid in determining terminus post quem dates for archaeological features.

Clothing has long been considered an important indication of an individual's social and economic status. Even after inexpensive buttons became widely available during the latter half of the 19th century, certain kinds remained very expensive and were worn on more costly clothing. Thus, the quality and price of recovered buttons can reflect the social class of the people who discarded or lost them.

In the 19th century, both the size and type of button differed on men's and women's clothing. By the time of the occupation of the Golden Eagle site, button sizes were fairly standard for garments such as shirts, vests, dresses, trousers, and overcoats (see table 6.1). Study of the proportional occurrence of different button sizes can indicate whether an area was occupied by single men or by men, women, and children.

Finally, assemblages of buttons from different sites can contribute to our knowledge of the trade networks which operated between the eastern United States and California during the 19th century.

METHODS OF CLASSIFICATION

Two hundred buttons were recovered from the Golden Eagle excavations. Only those buttons associated with temporally well-controlled features (features 6, 8, 15, and 20) were included in the analysis, but interesting types recovered from other portions of the site are described. Most of the buttons (64 percent) were recovered from Feature 15, a brick-lined pit associated with a bootmaker and, later, with Cronin's Oyster Saloon.
TABLE 6.1
Size and Function of Buttons

<table>
<thead>
<tr>
<th>Size in Lines</th>
<th>Typical Use</th>
<th>Range in mm</th>
<th>20</th>
<th>8</th>
<th>15</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>dress shirts/lingerie/babies</td>
<td>6-8</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>shirts</td>
<td>9-11</td>
<td>14</td>
<td>2</td>
<td>71</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>dresses/vests/pants (fly)</td>
<td>12-14</td>
<td>1</td>
<td>2</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>dresses/vests/suspenders</td>
<td>15-17</td>
<td>3</td>
<td>0</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>coats</td>
<td>18-20</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>overcoats</td>
<td>21-23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Shoe and gaiter buttons are not included.
Buttons in the collection have been classified first by material of composition and then by their method of attachment (either shanks, consisting of loops attached to the back, or two to five holes drilled through the body of the button). These classes correspond to broad differences in methods of manufacture. The material of composition tends to be deceptive; positive identification of material is often impossible without breaking the button to view it in cross section. Glass buttons were made opaque to resemble porcelain, and bone buttons were cut to look like wood. By the turn of the century, cinnabar, vegetable ivory, and all manner of "composition" buttons were used to imitate preferred materials.

Most of the buttons in the Golden Eagle collection were probably imported from England or France, since it was later in the century that the American button industry became well established. Button size was measured by standard units: lines in Great Britain and America and lignes in France (Johnson 1948:19). Although forty lines are said to equal one inch (Herskovitz 1978:37), button gauges which were examined varied from 38-45 lines per inch (Lord & Taylor 1881:137; Weinstock, Lubin, & Co. 1891:41; Sears, Roebuck & Co. 1919:940), and actual buttons seldom agreed in size to a set number of lines. These discrepancies could be a function of the imprecision of 19th-century manufacturing techniques or of a lack of standardized scales.

Because of the inconsistencies among button gauges, all buttons from the Golden Eagle site were measured to the tenth of a millimeter. Table 6.1 shows the relationship of button size and function.

Sixteen individual types of four materials of composition--bone, ceramic, metal, and shell--are represented among the remains. Sizes given in the descriptions below show the actual range of specimens in the collection, while sizes listed in table 6.2 refer to functional categories shown on table 6.1. Buttons are plain, opaque white, with no decoration, unless otherwise noted.

TYPE DESCRIPTIONS

BONE BUTTONS

Bone was one of the materials first used for button manufacture. In America, cattle bone was commonly used. This was boiled, cleaned, and cut lengthwise into slabs, from which discs were cut in varying sizes and fashioned into buttons.

Twenty-one bone buttons were recovered from the Golden Eagle site. All were stained or dyed brown; some were firm and shiny, some crude and porous in texture. They were identified as bone by the presence of small broken lines or flecks scattered irregularly throughout the material (Brown 1942:193). The several types are described below.
<table>
<thead>
<tr>
<th>Material</th>
<th>Type and Variety</th>
<th>Method of Attachment</th>
<th>Size* in mm</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>Dish</td>
<td>3 holes</td>
<td>6-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dish</td>
<td>4 holes</td>
<td>9-11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Dish</td>
<td>4 holes</td>
<td>12-14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dish-Knob</td>
<td>4 holes</td>
<td>15-17</td>
<td>3</td>
</tr>
<tr>
<td>Shell</td>
<td>Inkwell</td>
<td>4 holes</td>
<td>6-8</td>
<td>1</td>
</tr>
<tr>
<td>Feature 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>Dish</td>
<td>4 holes</td>
<td>9-11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Dish</td>
<td>4 holes</td>
<td>12-14</td>
<td>2</td>
</tr>
<tr>
<td>Feature 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>Thread Center</td>
<td>1 hole</td>
<td>12-14</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Thread Center</td>
<td>1 hole</td>
<td>18-20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sunken Panel</td>
<td>4 holes</td>
<td>15-17</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Sunken Panel</td>
<td>5 holes</td>
<td>15-17</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Tire</td>
<td>4 holes</td>
<td>12-14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tire</td>
<td>4 holes</td>
<td>15-17</td>
<td>2</td>
</tr>
<tr>
<td>Ceramic</td>
<td>Gaiter/Shoe</td>
<td>shank</td>
<td>9-11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Gaiter/Shoe</td>
<td>shank</td>
<td>12-14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dish</td>
<td>3 holes</td>
<td>6-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dish</td>
<td>4 holes</td>
<td>9-11</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Dish</td>
<td>4 holes</td>
<td>12-14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Dish</td>
<td>4 holes</td>
<td>15-17</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Dish-Knob</td>
<td>4 holes</td>
<td>12-14</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Dish-Knob</td>
<td>4 holes</td>
<td>15-17</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Dish-blue</td>
<td>4 holes</td>
<td>9-11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inkwell</td>
<td>4 holes</td>
<td>9-11</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Inkwell</td>
<td>4 holes</td>
<td>15-17</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Inkwell-blue/white</td>
<td>4 holes</td>
<td>9-11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Saucer</td>
<td>4 holes</td>
<td>15-17</td>
<td>2</td>
</tr>
<tr>
<td>Shell</td>
<td>Plain</td>
<td>4 holes</td>
<td>6-8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Plain-grey</td>
<td>4 holes</td>
<td>9-11</td>
<td>1</td>
</tr>
<tr>
<td>Feature 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>Shoe/Gaiter</td>
<td>shank</td>
<td>6-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dish</td>
<td>4 holes</td>
<td>12-14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dish-calico</td>
<td>4 holes</td>
<td>9-11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dish-radiating line</td>
<td>4 holes</td>
<td>12-14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inkwell</td>
<td>4 holes</td>
<td>15-17</td>
<td>1</td>
</tr>
<tr>
<td>Metal</td>
<td>Riveted</td>
<td>Rivet</td>
<td>21-23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Omega</td>
<td>shank</td>
<td>12-14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tripartate</td>
<td>4 holes</td>
<td>15-17</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Plain-grey</td>
<td>3 holes</td>
<td>6-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Plain</td>
<td>4 holes</td>
<td>9-11</td>
<td>1</td>
</tr>
</tbody>
</table>

*See Table 6.1 for typical use of each button size range.
Thread Center Buttons: 12-20mm diameter

Thin bone discs, having a center hole and no rim, were originally covered with fabric or with a pattern of numerous threads and were attached to garments by means of a thread eye. They originated in Dorset-shire, England, in the mid-18th century, where they were made of sheep horn and known as "high tops" or "Dorset buttons" (Luscomb 1967:57). Earlier examples of these buttons were covered with woven threads of gold, silver, and silk; later ones were covered with cloth (Albert and Kent 1949:44-45).

In America, bone discs of this type have been recovered from both 18th- and 19th-century contexts. Although the 18th-century discs may have been locally made by hand (South 1964:119), by the mid-19th century they were mass-manufactured by a process utilizing refuse chips of horn, wood, or bone sawed into thin flakes (Appleton 1857:200) (see plate 6.1a).

Bone Sew Thrus

Bone buttons having four or five holes, introduced in the mid-1700s (Olsen 1963:552), were widely used on men's underwear, suspenders, trousers, and work garments (Levine 1975:61). At the Golden Eagle site, these buttons occurred in two types: Sunken Panel (both four-hole and five-hole varieties) and Tire.

Sunken Panel

- **Four Hole: 15-18mm diameter.** These buttons have slightly convex backs and flat fronts, with four holes drilled into a central depression on the front. The central depression is circular, except in the case of one very crude button with a square depression. Some show slight knobs or indentations in the centers, which were left by the turning tool.

- **Five Hole: 15-17mm diameter.** The five-hole variety buttons are similar to the four-hole variety, except that they have a center hole which is slightly larger than the outside holes. The center hole was used to index the turning tool; after the blanks were cut, the four peripheral holes were drilled (Olsen 1963:552). Button collectors consider them to be the older of the two types (Brown 1942:193), and one pictured in *The Collector's Encyclopedia of Buttons* was attributed to the 18th century (Luscomb 1967:25). Olsen (1963:553) dated the five-hole button as early as 1750; his reference, however, is to the tire variety described below. The smaller of these buttons are irregularly drilled, having convex centers, convex borders, and flat backs, whereas the larger example exhibits all flat surfaces (plates 6.1b and 6.1c).

Tire - **Four Hole: 13-16mm diameter.** Tire type buttons have larger central depressions than the sunken panel and very narrow, rounded borders. A conical impression, which looks like an unfinished fifth hole, is drilled in the center of each. The center well is flat and shallow and the back is rounded (see plate 6.1d).
CERAMIC BUTTONS

All the small ceramic buttons recovered can be attributed to the period of mass production. In 1840 Richard Prosser of Birmingham, England, patented a revolutionary process in which clay ground to a fine powder was compressed in a dye or mould by means of a fly press (Dodd 1851:478). The resulting articles—both "sew thurs" and metallic shank buttons—were serviceable and inexpensive to manufacture.

Ceramic buttons quickly became fashionable in England and France, where they were produced in great quantities. Minton's porcelain works in Staffordshire, England, purchased Prosser's patent and was soon turning out 5000 gross of these buttons weekly (Dodd 1851:479). The fashion spread to America, where Prosser's brother, Thomas, had patented the same process in 1841 (Kirk 1974:337). Appleton's 1857 Dictionary of Machines, Mechanics, Engine-Work, and Engineering, which details complex manufacturing processes for other types of buttons, does not mention ceramic buttons, suggesting that they were not yet of much importance in America at that time. Most ceramic buttons were made during the 1860s (Luscomb 1967:183), although production continued into the 20th century (Encyclopedia Britannica 1910:891).

Except for a few colored specimens, the small ceramic buttons in the collection are opaque white. A few may be of milk glass, which was made in imitation of Chinese porcelain. In another process, patented in 1850, a paste of powdered minerals, combined with salt and flour, was pressed into a mold. The buttons produced by this method had a "crystalline or agate-like appearance" (Dodd 1851:479). This method of manufacture may account for several specimens in the collection which have rough or glassy surfaces...

Gaiter and Shoe Buttons

Domed or cone-shaped ceramic buttons with shanks were used originally to fasten gaiters or shoes. They also served a socio-technic function, as decoration on women's and children's clothing.

According to the sources consulted, gaiter buttons were made with a white-metal shank plate and loop shank (Kirk 1974:338; Switzer 1974:137; Luscomb 1967:76) first patented in 1864. The features in which these buttons were found (features 6 and 15) might therefore be given a terminus post quem of 1864. Unfortunately, all button shanks are wholly or partly missing; the buttons appear to have had screw-like devices with blunt ends, however, indicating shank-plate attachment. Shoes with buttons were made before 1864, however, and ceramic buttons with shanks were made at least as early as 1851 (Dodd 1851:479). It is therefore advisable to only use buttons that still exhibit entire shank plates for dating purposes. The four buttons of this type, pictured in plate 6.1e to 6.1h, are described below.

6.8 x 2.2mm. This button is slightly domed, of a rough texture, and has a deep, round hole for the shank attachment in the back.
8.5 x 5.0mm. This is a cone-shaped button, of smooth texture, having a deep, round hole in the back.
6.7 x 10.6mm. This high-domed button was made in two parts. The base is flat; a metal shank, with its loop broken off, is embedded in the base. It appears to have been a shoe button. 13.7 x 7.5mm. This low-domed button has a white-metal shank embedded in the base and a metal loop shank but no shank plate.

Ceramic Sew-Thru Buttons

These buttons were known as "agates" to the customers of the day and are now divided by button collectors into such categories as "dishes," "saucers," "inkwells," and "tires," according to their shape. The vast majority were worn on men's shirts; very small ones were probably from babies' clothes or from lingerie, while larger ones were from women's gingham or cheap worsted dresses (Sears, Roebuck & Co. 1910:940).

Dish. There are several varieties of dish buttons in the collection: plain buttons (both knob and knobless) and fancy buttons (calico and pie crust). Fancy, dish-shaped buttons, colored or decorated in some fashion, would have been worn on more valued articles of clothing. They all occurred in chronologically late contexts on the site, which is suggestive of the greater variety of material goods that became available to Californians by the 1870s. No matching examples were recovered, indicating that they were accidentally lost from clothing.

Plain

Knobless Center - Three Hole: 7-8mm diameter; Four Hole: 9-16mm diameter. The knobless center button is the most common type within the dish class and in the entire collection. The center is concave, the back, flat, and the sides are slightly beveled or rounded. All but one in the collection are opaque white. The odd, dark blue button matches one recovered during the University of California 1979 excavation season at Somersville, under the direction of James Deetz (plate 6.11 and 6.1j).

Knob Center - Four Hole: 13-17mm diameter. The back of this button is convex. In the middle of the concave face is a small raised "knob." Buttons having this knob are only in the larger specimens; they probably represent a variation in the manufacturing process.

Calico: 11.0mm diameter. Opaque buttons having transfer-printed patterns across their faces were known as "calicos" and were popular at the same time that the printed fabric of the same name was in vogue. First manufactured in France and England, by 1848 they were made in the United States and became very popular here. They were worn on men's clothing, as well as on that of women and children. Only one calico button, with a pattern of red stars on a white background, was found at the Golden Eagle site. Calicos were more widely available than is suggested by the Golden Eagle assemblage. When the steamboat Bertrand, conveying merchandise to the frontier, sank in 1865, over 30 percent of the ceramic buttons it carried were calicos (Switzer 1974:136).
Pie Crust (hobnail): 10.6mm diameter. One example of a hobnail pie crust was found. It has a rounded back and knobs of china around the rim, resembling a fluted crust of a pie.

Pie Crust, Radiating Line Rim: 13.8mm diameter. The rim of this button is made up of 24 radiating lines. Buttons of this description were found during excavations in Ventura, California (Kirk 1974:346). They were made into the 20th century, and were advertised as "fancy white agate buttons" (Sears, Roebuck & Co. 1902:940).

Inkwell: 8.7-15.4mm diameter. These buttons are cone-shaped, with rounded backs and deep, concave center wells in which four holes are drilled. One fancy example has a blue rim; the others are plain white (see plate 6.1n).

Saucer: 15.7mm diameter. The single saucer button in the collection has a rounded back, a convex front with four holes and no rim, and flat edges (see plate 6.1o).

METAL BUTTONS

Plain buttons of yellow metal are often difficult to date because of their long period of use. "Yellow metal" was the buttoner's term for all metal compounds of brass or bronze, while "white metal" referred to pewter buttons in various mixtures of lead and tin (Johnson 1948:6,15). From about 1800, Connecticut brass manufacturers strove to compete with the Birmingham metal-button makers. By the War of 1812, the American metal button industry was firmly established in Waterbury, Connecticut, where quantities of sheet brass and gilt buttons were produced (Bishop 1868:112). Buttons represented in this collection were probably all domestically manufactured.

Yellow- and white-metal buttons were worn on men's clothing (Levine 1975:68). The fact that only four examples were recovered from the Golden Eagle could reflect the greater importance attached to them than to ceramic buttons; consequently, they were more carefully guarded. The specimens found can all be attributed to a context of loss rather than of discard. The four metal buttons in the collection are each of a different type.

Riveted: 21.5mm diameter

The crown of the riveted button is of a thin, pressed metal, with its front edge turned back over the rim. A pressed pattern of anchors and crescent moons forms the border. The back, which is rusting, is probably of iron; it is constructed in the same manner as modern Levi's jeans buttons. This fastener is of a cheap, mass-produced type that superseded the old overall button and is large enough to have been worn on a man's overcoat. It appears to be a late, machine-made item, dating from the last half of the 19th century (Johnson 1948:17) (see plate 6.1q).

Omega: 14.0mm diameter

The body of this button is coin-shaped, having been cut from a sheet of rolled yellow metal. A round, wire-loop shank soldered to the back, its
ends bent over like the Greek letter "omega," forms a stable base of attachment. On the back, the words "orange colour" form an impressed border, with a star between each word. These words are a "quality mark," designating the type of gilding used to cover the base metal (Johnson 1948:8). This type of button was manufactured using a combination of machine and handwork. Olsen (1963:552) assigned this type of button a date of 1812-20, but, according to Johnson (1948:13), they were common from approximately 1800-1850. Buttons of this type were found at Brunswick Town and Fort Fisher in both 1800-1830 and 1837-1865 contexts (South 1964:120-121) (see plate 6.1r).

Tripartate Construction: 16.5mm diameter

This type of button is composed of two, yellow-metal discs with a fibrous filler in the middle. Four holes for attachment are set in a slightly depressed center, bordered by an impressed criss-cross pattern around the circumference. This type of construction was originated by a Dane, Benjamin Sanders, in 1823, and came into use late in the 1820s (Johnson 1948:13,14). Buttons of this type were found at Brunswick Town and Fort Fisher, in both 1800-1830 and 1837-1865 contexts (South 1964:121) (see plate 6.1s).

Stamped Metal: 15.7mm diameter

The construction of this button is of one-piece, stamped yellow metal (probably brass or brass alloy). The border is flat; the center is concavely depressed, having four holes for attachment. Its lack of decoration or any handwork make it attributable to the post-1850 period, by which time most buttons were mass-produced by machines (Johnson 1948:17) (see plate 6.1t).

SHELL BUTTONS

Prior to the 1850s, making buttons from shell was a cottage industry. After that time, machines, using tubular saws and other mass-produced devices, replaced handwork in button manufacture (Albert and Kent 1949:59). Makers in Birmingham, England, produced most of the shell buttons made during the mid-19th century. The finest of these were of white Macassar shells from the East Indies, but cheaper varieties made of shell from Manilla, Bombay, and Alexandria were also available (White 1977:71). "Smoked pearls" were darker buttons made from the black mother-of-pearl shell of the Society Islands. In 1852 it was reported that these buttons were currently very high priced because many Pacific shell divers had gone to Australia to dig for gold (Scientific American 1852:120). Before the American Civil War, only a small pearl button industry existed in the United States, but the complete cessation of imports from Britain forced America to establish her own shell-button manufactory. This, coupled with the shell shortage, led to a decline in the Birmingham shell button industry in the 1870s (White 1977:72). Until 1891, when the American freshwater shell industry began, pearl buttons were relatively very costly.

It is the high cost of shell buttons which makes them particularly useful as socioeconomic indicators during much of the 19th century. They can also reflect demographic characteristics: Although some shell buttons
were worn on men's dressier shirts, finding them in quantity can be
taken as indicating the presence of women on a site. Victorian women's
dresses closed by means of hooks and eyes down the back, but shell but-
tons served a socio-technic function as both closures and decoration
along waists and bodices (Levine 1975:61).

Shell buttons found at the Golden Eagle site have been identified by
white or grey color only, because exact identification of shell types is
often impossible once the outer layer has worn off (Luscomb 1967:177).
The very small buttons of less than 10 millimeters diameter, which are
represented by the first three varieties described below, were not intro-
duced to America from France until about 1855 (Kirk 1974:325). They were
worn on shirts, as well as on lingerie and children's garments.

Plain Four Hole: 8.6-9.6mm diameter

These white or grey buttons have holes asymmetrically located and
irregularly drilled. Both backs and fronts are flat, with no decoration
or incisions (see plate 6.1a).

Sunken Panel: Three Hole: 7.6mm diameter; Four Hole: 7.0-9.3mm

These grey or white buttons have flat surfaces, with holes drilled
into a circular central depression.

Shallow Inkwell: 7.9mm diameter

The sides of this white button slope up to the center well, which is
depressed like an inkwell (see plate 6.1w).

Fish Eye: Two Hole: 15.6mm diameter

This button is of iridescent shell, with traces on the back. Its holes
are uniformly drilled, and its back is flat with beveled edges. There is a
depressed area on the crown around the holes, and an incision between the
holes forms a thread groove. Buttons of this type would have characteris-
tically been worn down the front of a woman's dress.

DISCUSSION

Of the two hundred buttons in the collection, the 172 specimens re-
covered from the temporally well-controlled features will be considered
in this interpretive summary (see table 6.2). These proveniences are:
Feature 20, associated with the Golden Eagle restaurant; Feature 8, a
deposit associated with the hotel and a blacksmith's quarters; and Fea-
tures 15 and 6, associated with a boot manufacturer and W. Cronin's
Oyster Saloon. Although only Feature 15 contained the quantity of but-
tons necessary to provide a representative sample, variations in button
types among the four features are chronologically significant.

Feature 20, a brick-lined privy or trash pit, was constructed in
1858, or soon after, and was filled with trash from the hotel's rest-
aurant during the next several years. All but one of the specimens found
therein were plain white ceramic buttons of various sizes (see table 6.2).
The odd example is of mother-of-pearl, probably from lingerie or a baby's
clothing. This recovery is in keeping with ceramic and glass remains, which date Feature 20 as the earliest deposit on the site (c.1860). It is hypothesized that these plain buttons were all that was available at that time in Sacramento. Seventy percent of the specimens in this feature are shirt buttons, and matching examples indicate disposal by discard of at least one man's shirt.

Feature 8, a large pit of uncertain function, was filled with garbage from a blacksmith's and the Golden Eagle Hotel, between approximately 1862 and the raising of the streets around 1870, which caused the feature to go out of use. All the buttons recovered were plain or white ceramic, with no matching examples.

Feature 15, another brick-lined pit, contained deposits from a boot manufacturer and a fashionable oyster saloon. Over two-thirds of the site's buttons came from this feature (see table 6.2). Though the majority were ceramic shirt buttons, more varieties were present than in the features discussed above. Buttons of dress or vest size were also well represented. Multiple examples of matching bone and ceramic buttons show deposition by discard of entire garments. This pattern suggests that the earlier occupants left behind clothing, which was dumped into Feature 15 when Cronin took over the premises in 1874.

Feature 6, chronologically the most recent feature, probably dates from the 1874-78 period. It contained much refuse from W. Cronin's oyster saloon as well as some cobbler's remains, all deposited under a floor. The buttons found in this feature had probably been deposited in a context of loss, having filtered through the floorboards of the saloon. The greatest variety in button types was found in this feature, which contained metal, shell, and fancy ceramic buttons of all sizes and varieties. This finding supports the premise that Cronin's oyster saloon was one of the more elegant establishments in Sacramento during the 1870s.

The correlation of increase in varieties of buttons with time could have several implications. The hotel and nearby businesses may have become more fashionable during the time covered by the deposits—approximately 1858-1878—thereby attracting people who fastened their garments by fancier means. A change in fashion or in types of buttons manufactured could instead be represented. Alternatively, the increase in types could indicate that a greater variety of material goods had become available by the 1870s, as the frontier of California gave way to urban civilization. From the historical records consulted, the latter appears to be the most likely explanation. Very little research has been conducted concerning the trade networks operating at the time in California, and information of this sort could shed light on the material goods found in archaeological contexts.

Sizes of buttons found, especially the large number of 16-line, or 9-11mm shirt buttons (see table 6.1), indicate a predominantly male occupation of the Golden Eagle site. Additionally, the duplicate specimens from Feature 15 and, to a lesser extent, Feature 20, are from men's clothing. Comparatively few duplicates were found in women's button sizes.

6-11
It was traditional for women to remove buttons from worn-out garments before relegating them to the scrap bin. The matching bone, work-clothes buttons and ceramic shirt buttons indicate that men were present, during the 1850s and 1860s, who had neither wives nor mothers to take care of their clothing. The presence of unmarried men at that time is supported by census data.

It is hoped that this paper will contribute to understanding the usefulness of buttons as indicators of fashion and will provide data for comparative research purposes. Attempts have been made to correlate assemblages of buttons from archaeological sites with those on dated garments (Switzer 1974; Furnis 1979), and more work of this type should be conducted. There is little information on button prices until the advent of mail-order catalogues during the final years of the 19th century, and further research is needed in this area. Studies of mercantile collections, such as the one recovered from Steamship Bertrand (Switzer 1974), have great potential for revealing availability of various types at a certain date. Currently, there are few button assemblages from carefully dated archaeological contexts; comparative collections are vital to understanding chronological, demographic, and socioeconomic variations as expressed by material culture.
PLATE 6.1

a) Bone, thread center
b) Bone, sunken panel
c) Bone, sunken panel
d) Bone, tire
e) Gaiter/shoe
f) Gaiter/shoe
g) Gaiter/shoe
h) Gaiter/shoe
i) "Small china," knobless center dish
j) "Small china," knobless center dish
k) "Small china," knob center dish
l) "Small china," calico dish
m) "Small china," hobnail piecrust dish
n) "Small china," inkwell
o) "Small china," saucer
p) "Small china," tire
q) Metal, riveted
r) Metal, omega
s) Metal, tripartate
t) Metal, stamped
u) Shell, plain
v) Shell, sunken panel
w) Shell, shallow inkwell
x) Shell, fish eye
Plate 6
REFERENCES

Albert, Lillian S., and Kathryn Kent

Appleton's Dictionary of Machines, Mechanics, Engine-Work, and

Bishop, J. Leander
1868 A History of American Manufactures from 1608 to 1860.

Brown, Dorothy Foster

Butler, Brenda J.
1979 Archaeology of the Cothrin Building, Old Sacramento, California.
Manuscript on file, Cultural Heritage Section, California Department
of Parks and Recreation, Sacramento.

Dodd, George, editor
1851 Knight's Encyclopedia of the Industry of All Nations. London:
Charles Knight.

Encyclopedia Britannica

Felton, Susie K.S.
1976 The Button Analysis, 49er Scene. Manuscript on file, Cultural
Heritage Section, California Department of Parks and Recreation,
Sacramento.

Furnis, C. Lynn
1978 Sacramento's First City Hotel: A Site Report. Manuscript on file,
Cultural Heritage Section, California Department of Parks and
Recreation, Sacramento.

1979 Button Collection from Los Angeles County Museum of Natural
History. Manuscript on file, Cultural Heritage Section,
California Department of Parks and Recreation, Sacramento.

Gillio, David, Francis Levone, and Douglas Scott
1980 Buttons. IN Some Common Artifacts Found at Historical Sites.
Forest Service.

Herskovitz, Robert M.
1978 Fort Bowie Material Culture. Anthropological Papers of the
University of Arizona, No. 31. Tucson: University of Arizona
Press.

6-14
Johnson, David F.

Kirk, Myrtle A.
1975 Buttons from the San Buenaventura Mission Site. In 3500
Years on One City Block, Roberta S. Greenwood, ed. Ventura:
San Buenaventura Redevelopment Agency.

Levine, Terry Y.
1975 Analysis of the Buttons from La Casa del Rancho Los Cerritos.

Lord & Taylor
1881 Clothing and Furnishings. Illustrated Catalog and Historical

Luscomb, Sally C.

Olsen, Stanley J.
1963 Dating Early Plain Buttons by their Form. American Antiquity
28 (4):551-554.

Opre, Lula

Scientific American
1852 8 (15):120 (25 December 1852).

Sears, Roebuck & Co.

Smith, G. Herbert
1968 Big Bend Historic Sites. Smithsonian Institution, River Basin

South, Stanley
1964 Analysis of the Buttons from Brunswick Town and Fort Fisher.
The Florida Anthropologist 17 (2):113-133.

1977 Archaeological Pattern Recognition: An Example from the British

Stone, Lyle M.
1974 Fort Michilimackinac 1715-1781: An Archaeological Perspective on
the Revolutionary Frontier. Publications of the Museum, Mich-
igan State University, East Lansing.

Switzer, Ronald R.
135-141.
Weinstock, Lubin & Co.

White, D.P.
1977 The Birmingham Button Industry. Post Medieval Archaeology
11:67-80.