Chemistry is the study of matter, its properties, and how it changes. An understanding of chemical principles is required to fully understand most scientific disciplines such as biology, medicine, physics, environmental science, geology, materials science, pharmaceuticals, agriculture, forensic science, most branches of engineering, and even studio art. Chemists not only study molecules that nature provides but also synthesize new molecules to be used in many of these fields.

The department offers both bachelor of arts and bachelor of science degrees. Both degrees provide students with a solid chemical foundation to prepare them for graduate school, professional school, or the workforce. The B.S. degree requires more science coursework, while the B.A. allows more flexibility for other academic interests. The B.S. in Biochemistry is designed for students with an interest in the biological aspects of chemistry and the pre-health professions.

Careers in Chemistry

Sonoma State University is fortunate to be situated within the greater Bay Area, which is rapidly becoming a leading area for research in disciplines such as biotechnology, pharmaceuticals, materials science, and proteomics. Sonoma State graduates have a high success rate for acceptance into advanced degree programs in chemistry and biochemistry; medical, dental, and veterinary schools; cell and molecular biology; and materials science. They have also entered the job market in a variety of careers, including government agencies (FBI, forensics), technical writing, chemical and biochemical research, cosmetics and perfumes, space chemistry, teaching at all levels, medical technology, pharmaceuticals, patent law, materials research, consulting, and applications of chemistry in business.

Students seeking teaching credentials may elect chemistry as their major within the teaching credential program in science.

The small size and educational philosophy of the department encourage students to develop close relationships with other students, faculty, and staff. Course work and individual research projects place an emphasis on laboratory experiences in which students are expected to become familiar with a variety of techniques and instruments. In their junior year, students participate in the “Senior Experience” to further prepare themselves for entry into industry or graduate education. In 2006, the department returned to the newly remodeled Darwin Hall, equipped with new lower-division teaching laboratories and facilities for advanced laboratory courses and undergraduate research. Our laboratories are equipped with many modern, computerized instruments that include ultraviolet, visible, infrared, atomic absorption, and fluorescence spectrophotometers; a nuclear magnetic resonance spectrometer; high-pressure liquid, gas, and ion exchange chromatographs; and a gas chromatograph with mass spectrometer detector.

Bachelor of Science in Chemistry (Certified by the American Chemical Society)

The B.S. degree provides thorough preparation for students who wish to pursue advanced degrees in the chemical sciences, go to professional school, or work as chemists in industry. All courses in the major core, major electives, and supporting courses must be taken in the traditional grading mode (A-F). Undergraduate research is required for the B.S. degrees in Chemistry and Biochemistry. Transcripts will be noted as approved by the American Chemical Society.

<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General education</td>
<td>51</td>
</tr>
<tr>
<td>Major requirements (may include 6 units in GE)</td>
<td>47</td>
</tr>
<tr>
<td>Supporting courses (may include 3 units in GE)</td>
<td>22</td>
</tr>
<tr>
<td>Electives</td>
<td>0-9</td>
</tr>
<tr>
<td>Total units needed for graduation</td>
<td>120</td>
</tr>
</tbody>
</table>

Major Core Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 115AB</td>
<td>General Chemistry (or CHEM 125A)</td>
<td>10</td>
</tr>
<tr>
<td>(6 units may be applied to GE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 255</td>
<td>Quantitative Analysis (or CHEM 125B)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 310AB</td>
<td>Physical Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 316</td>
<td>Physical Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 325</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 335AB</td>
<td>Organic Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 336</td>
<td>Organic Chemistry Laboratory II</td>
<td>2</td>
</tr>
</tbody>
</table>
CHEM 401 Instrumental Analysis and Chemical Synthesis 3
CHEM 402 Advanced Synthesis and Instrumental Analysis 3
CHEM 445 Structural Biochemistry or
CHEM 446 Metabolic Biochemistry 3
CHEM 494 Undergraduate Research and Service Learning 2
CHEM 497 Research Seminar 1

Total units in the major core 47

Supporting Courses

MATH 161 Calculus I (3 units may be applied to GE) 4
MATH 211 Calculus II 4
MATH 261 Calculus IV 4
PHYS 114 Introduction to Physics I 4
PHYS 116 Introduction to Physics Laboratory I 1
PHYS 214 Introduction to Physics II 4
PHYS 216 Introduction to Physics Laboratory II 1

Total units in supporting courses 22

Strongly recommended: additional units in CHEM 494, Undergraduate Research and Service Learning 1-6

Sample Four-year Program for B.S. in Chemistry

<table>
<thead>
<tr>
<th>FRESHMAN YEAR:: 30 Units</th>
<th>SOPHOMORE YEAR:: 30 Units</th>
<th>JUNIOR YEAR:: 31 Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester (15 Units)</td>
<td>Spring Semester (15 Units)</td>
<td>Fall Semester (16 Units)</td>
</tr>
<tr>
<td>CHEM 115A (5)</td>
<td>CHEM 115B (5)</td>
<td>CHEM 325 (3)</td>
</tr>
<tr>
<td>MATH 161 (4)</td>
<td>MATH 211 (4)</td>
<td>CHEM 325 (3)</td>
</tr>
<tr>
<td>GE (3)</td>
<td>GE (3)</td>
<td>GE (3)</td>
</tr>
<tr>
<td>GE (3)</td>
<td>GE (3)</td>
<td>GE (3)</td>
</tr>
</tbody>
</table>

Total units needed for graduation 120

Bachelor of Science in Biochemistry

The B.S. degree in biochemistry is appropriate for students interested in the medical fields, graduate study in chemistry or biochemistry, or employment in the biochemical, pharmaceutical, or biotechnology industries. All courses in the major core, major electives, and supporting courses must be taken in the traditional grading mode (A-F). Undergraduate research is required for the B.S. degree in biochemistry.

Degree Requirements

<table>
<thead>
<tr>
<th>General education</th>
<th>Major requirements (may include 6 units in GE)</th>
<th>Biology courses (may include 3 units in GE)</th>
<th>Supporting courses (may include 3 units in GE)</th>
<th>Electives</th>
<th>Total units needed for graduation</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>46</td>
<td>12</td>
<td>16-18</td>
<td>0-7</td>
<td>120</td>
</tr>
</tbody>
</table>

Major Core Requirements

CHEM 115 AB General Chemistry (or CHEM 125A) (6 units may be applied to GE) 10
CHEM 255 Quantitative Analysis (or CHEM 125B) 4
CHEM 310 AB Physical Chemistry 6
CHEM 325 Inorganic Chemistry 3
CHEM 335AB Organic Chemistry 8
CHEM 401 Instrumental Analysis and Chemical Synthesis 3
CHEM 441 Biochemical Methods 3
CHEM 445 Structural Biochemistry 3
CHEM 446 Metabolic Biochemistry 3
CHEM 494 Undergraduate Research and Service Learning 2
CHEM 497 Research Seminar 1

Total units in the major core 46

Biology Courses

BIOL 123 Molecular and Cell Biology (3 units may be applied to GE) 4

Choose 2 from the following:

BIOL 340 General Bacteriology (4)
BIOL 342 Molecular Genetics (4)
BIOL 343 Molecular Microbiology (4)
BIOL 344 Cell Biology (4)
BIOL 349 Animal Physiology (4)
BIOL 382 Parasitology (4)
BIOL 383 Virology (4)
BIOL 480 Immunology (4)
BIOL 544 Advanced Cell Biology (4)
or other courses approved by the Chemistry Department

Total units in Biology courses 12

Supporting Courses
MATH 161 Calculus I (3 units may be applied to GE) 4
MATH 211 Calculus II 4
PHYS 210A or 114 Physics I 3-4
PHYS 209A or 116 Physics Laboratory I 1
PHYS 210B or 214 Physics II 3-4
PHYS 209B or 216 Physics Laboratory II 1

Total units in supporting courses 16-18

Sample Four-year Program for Bachelor of Science in Biochemistry

FRESHMAN YEAR:: 30 Units

Fall Semester (15 Units) Spring Semester (15 Units)
CHEM 115A (5) CHEM 115B (5)
MATH 161 (4) MATH 211 (4)
GE (3) GE (3)
GE (3) GE (3)

SOPHOMORE YEAR:: 30 Units

Fall Semester (16 Units) Spring Semester (14 Units)
CHEM 335A (5) CHEM 335B (3)
PHYS 114 (4) or 210A (3) PHYS 214 (4) or 210B (3)
PHYS 116 (1) or 209A (1) PHYS 216 (1) or 209B (1)
BIOL 123 (4) GE (3)
Elective (2 or 3) GE (3 or 4)

JUNIOR YEAR:: 31 Units

Fall Semester (16 Units) Spring Semester (15 Units)
CHEM 445 (3) CHEM 441 (3)
CHEM 310A (3) CHEM 310B (3)
CHEM 255 (4) CHEM 446 (3)
GE (3) GE (3)
GE (3) GE (3)

SENIOR YEAR:: 29 Units

Fall Semester (15 Units) Spring Semester (14 Units)
CHEM 401 (3) CHEM 325 (3)
CHEM 494 (2) CHEM 497 (1)
BIOL elective (4) BIOL elective (4)
GE (3) GE (3)
GE (3) Elective (3)

TOTAL UNITS:: 120

Bachelor of Arts in Chemistry

The B.A. degree provides a solid foundation in chemistry so students have the same career options as those with the B.S. degree, while allowing students the flexibility to pursue other academic interests. All courses in the major core, major electives, and supporting courses must be taken in the traditional grading mode (A-F). It is highly recommended that students perform undergraduate research with a faculty member.

Degree Requirements Units
General education 51
Major requirements (may include 6 units in GE) 38
Supporting courses (may include 3 units in GE) 16-18
Electives 13-24
Total units needed for graduation 120

Major Core Requirements

CHEM 115AB General Chemistry (6 units may be applied to GE) or (CHEM 125A) 10
CHEM 255 Quantitative Analysis (or CHEM 125B) 4
CHEM 310AB Physical Chemistry 6
CHEM 316 Physical Chemistry Laboratory 2
CHEM 325 Inorganic Chemistry 3
CHEM 335AB Organic Chemistry 8
CHEM 401 Instrumental Analysis and Chemical Synthesis 3
CHEM 497 Research Seminar 1
Elective (upper-division chemistry) 1

Total units in the major core 38

Supporting Courses
MATH 161 Calculus I (3 units may be applied to GE) 4
MATH 211 Calculus II 4
PHYS 210A or 114 Physics I 3-4
PHYS 209A or 116 Physics Laboratory I 1
PHYS 210B or 214 Physics II 3-4
PHYS 209B or 216 Physics Laboratory II 1

Total units in supporting courses 16-18

Strongly Recommended: CHEM 494, Undergraduate Research and Service Learning 1-6
Sample Four-year Program for Bachelor of Arts in Chemistry

FRESHMAN YEAR: 30 Units

<table>
<thead>
<tr>
<th>Fall Semester (15 Units)</th>
<th>Spring Semester (15 Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 115A (5)</td>
<td>CHEM 115B (5)</td>
</tr>
<tr>
<td>MATH 161 (4)</td>
<td>MATH 211 (4)</td>
</tr>
<tr>
<td>GE (3)</td>
<td>GE (3)</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR: 30 Units

<table>
<thead>
<tr>
<th>Fall Semester (15 Units)</th>
<th>Spring Semester (15 Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 335A (5)</td>
<td>CHEM 335B (3)</td>
</tr>
<tr>
<td>PHYS 114 (4) or 210A (3)</td>
<td>PHYS 214 (4) or 210B (3)</td>
</tr>
<tr>
<td>PHYS 116 (1) or 209A (1)</td>
<td>PHYS 216 (1) or 209B (1)</td>
</tr>
<tr>
<td>GE (3)</td>
<td>GE (3)</td>
</tr>
<tr>
<td>GE (3)</td>
<td>GE (3)</td>
</tr>
</tbody>
</table>

JUNIOR YEAR: 30 Units

<table>
<thead>
<tr>
<th>Fall Semester (16 Units)</th>
<th>Spring Semester (14 Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 255 (4)</td>
<td>CHEM 310B (3)</td>
</tr>
<tr>
<td>CHEM 310A (3)</td>
<td>CHEM 316 (2)</td>
</tr>
<tr>
<td>GE (3)</td>
<td>GE (3)</td>
</tr>
<tr>
<td>GE (3)</td>
<td>GE (3)</td>
</tr>
<tr>
<td>Elective (3)</td>
<td>GE (3)</td>
</tr>
</tbody>
</table>

SENIOR YEAR: 30 Units

<table>
<thead>
<tr>
<th>Fall Semester (14 Units)</th>
<th>Spring Semester (16 Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 401 (3)</td>
<td>CHEM 497 (1)</td>
</tr>
<tr>
<td>CHEM 494 (1)</td>
<td>CHEM 325 (3)</td>
</tr>
<tr>
<td>GE (3)</td>
<td>Elective (12)</td>
</tr>
<tr>
<td>GE (3)</td>
<td></td>
</tr>
<tr>
<td>Elective (4)</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL UNITS: 120

Minor in Chemistry

Completion of the following SSU courses (or their equivalent): General Chemistry 115A and B (10 units), Quantitative Analysis 255 (4 units), Organic Chemistry: either 232 (5 units) or 335A (5 units), plus at least two additional upper-division classes for a total of 6 units. These additional upper-division classes must be taken in residence at SSU. Up to six units in chemistry 115A/B may count toward the General Education requirements in area B including the laboratory requirement.

Secondary Education Teaching Credential Preparation

Chemistry students must demonstrate competence in the natural sciences by passing the subject matter examination required by the California Commission on Teacher Credentialing. One part of the examination will test breadth of knowledge in biology, chemistry, physics, astronomy, and geology. Another part of the examination will test depth of knowledge in a particular area, such as chemistry. The B.A. or B.S. degree in chemistry is recommended to prepare for the part of the examination that tests depth of knowledge in chemistry. For more information, please contact the Chemistry Department office, Darwin Hall 300, (707) 664-2119.