Computer and Engineering Science (CES)

CES 400 Linear Systems Theory (3)
Lecture, 3 hours. Analysis of linear time-invariant systems, correlation, convolution, impulse response, complex variables, Fourier series and transform, sampling, filtering, modulation, stability and causality, feedback and control systems, Laplace and Z-transform, and fast Fourier transforms. Prerequisite: MATH 241 or consent of instructor.

CES 430 Photonics (3)
Lecture, 3 hours. Lasers, diode lasers and LED’s, fiber optics, and optical radiation detectors. Prerequisites: A course in modern Physics (such as PHYS 314) and electromagnetism (such as PHYS 430).

CES 432 Physics of Semiconductor Devices (3)
Lecture, 3 hours. Semiconductor materials, crystal structure and growth, energy bands and charge carriers, and conductivity and mobility; metal semiconductor and p-n junctions, p-n junction diodes, bipolar junction transistors, field effect transistors, CCD’s, photonic devices and integrated circuits. Projects in photolithography, conductivity and contact resistance measurements, I-V and C-V characteristics of diodes, and characterization of transistors may be assigned. Prerequisites: ES 230 or PHYS 314 or consent of instructor.

CES 440 Data Communications (3)
Lecture, 2 hours; laboratory, 3 hours. The ISO reference model, theoretical basis for data communications, data transmission theory and practice, telephone systems, protocols, networks, and internetworks, with examples. Prerequisites: ES 440 or consent of instructor.

CES 490 Selected Topics in CES (1-3)
Special topics to introduce new emerging fields, provide foundation for advanced graduate level courses or augment other courses in computer and engineering science. Prerequisite: consent of instructor.

CES 494 Directed Readings (1-3)
Independent study under a faculty member. The proposal must be approved by the graduate advisor if the course is to apply toward degree requirements. Prerequisite: consent of instructor.

CES 500 Queuing and Transform Theory (3)
Lecture, 3 hours. Review of probability theory, fundamentals of transform theory, Fourier and Z-transforms, Markovian and discrete time queuing systems, single and multi server queuing networks, and their applications. The course may require significant lab and/or project activity. Prerequisites: ES 314 or consent of instructor.

CES 510 Intelligent Systems Design (3)
Lecture, 3 hours. Introduction to adaptive systems: neural networks, genetic algorithms (GAs), fuzzy logic, simulated annealing, and tabu search. Specific topics include perceptions, backpropagation, Hopfield nets, neural network theory, simple GAs, parallel GAs, cellular GAs, schema theory, mathematical models of simple GAs, and using GAs to evolve neural networks. Prerequisites: ES 314 and CES 400, or consent of instructor.

CES 512 Theory of Software Systems (3)
Lecture, 3 hours. Review of data structures and basic algorithms for sorting, searching, and string processing. Basics of logic, formal systems, grammars, and automata. Applications to some of the following areas: design of language processing tools (editor, translator etc.), software specification, testing and verification, and non-numerical problem solving. The course may require significant lab and/or project activity. Prerequisite: ES 314 or consent of instructor.
CES 514 DATA MINING (3)
Lecture, 3 hours. Introduction to data models, data warehousing, association-rule mining, searching the Web, Web Mining: Clustering, AI techniques (neural networks, decision trees), and applications and case studies. The course may require significant lab and/or project activity. Prerequisite: ES 314 or consent of instructor.

CES 516 HIGH-PERFORMANCE COMPUTING (3)
Lecture, 3 hours. Algorithmic tools and techniques for problems hard to solve on a standard uniprocessor model such as problems involving large data sets or real-time constraints; development of computational models to analyze the requirements and solutions and special hardware based solutions; case studies to illustrate the developed models, tools, and techniques. The course may require significant lab and/or project activity. Prerequisite: ES 314 or consent of instructor.

CES 520 EMBEDDED SYSTEMS (3)
Lecture, 3 hours. Three major topics covered in this course are controlling specialized I/O devices with particular attention to bit patterns and priority interrupts; waveshapes and measurement tools, both hardware and software; and real-time operating systems. Prerequisites: ES 230, 231 and 310 or consent of instructor.

CES 522 VLSI DESIGN (3)
Lecture, 3 hours. IC technology review; hardware description languages and describing hardware using one of the languages, modern VLSI design flow; circuit partitioning; clustering; floorplanning; placement; global routing; area efficient design, area-time trade-offs. The course may require significant lab and/or project activity. Prerequisite: CES 530 or consent of instructor.

CES 524 ADVANCED COMPUTER ARCHITECTURE (3)
Lecture, 3 hours. Concept of advanced computing architectures, pipelining, multiprocessing, and multiprogramming. Single and multi-stage interconnection networks, applications/algorithms for parallel computers, local and system business architectures, and CPU and computer system performance analysis. The course may require significant lab and/or project activity. Prerequisite: ES 230 or consent of instructor.

CES 530 ANALOG AND DIGITAL MICROELECTRONICS (3)
Lecture, 3 hours. Introduction to analog/digital integrated circuits, bipolar and MOS transistor models, analysis and design of monolithic operational amplifiers, frequency response, non-linear circuits, and CMOS and Bipolar Logic Circuits. The course requires lab and/or project activity. Prerequisites: ES 230-231 and CES 432 or consent of instructor.

CES 532 ADVANCED PHOTONICS DEVICES (3)
Lecture, 3 hours. Optical resonators, interaction of photons with materials, LEDs, laser diodes, optical amplifiers, optical noise, photoconductors, electrooptic modulators, photonic switches, and nonlinear optical materials and devices. The course requires lab and/or project activity. Prerequisite: CES 430 or equivalent.

CES 540 DIGITAL DATA TRANSMISSION (3)
Characteristics of base-band and bandpass channels, optimum signaling sets, and receivers for digital communications; effect of noise and intersymbol interference on probability of error; channel capacity; introduction to phase-locked loop analysis for timing and carrier synchronization. Prerequisites: CES 400 and CES 440 or consent of instructor.

CES 542 DIGITAL SIGNAL PROCESSING (3)
Lecture, 3 hours. Time/frequency analysis of discrete-time signals and systems. Fast implementations of the DFT and its relatives. IIR and FIR digital filter design, implementation, and quantization error analysis. Decimation, interpolation, and multirate processing. Prerequisite: CES 400 or consent of instructor.

CES 543 OPTICAL FIBER COMMUNICATIONS (3)
Lecture, 3 hours. Lightwave fundamentals, optical fiber as transmission media, losses and bandwidth, and fiber cables, i.e., optical sources, detectors, optical components such as switches, access couplers, wavelength multiplexers and demultiplexers, analog and digital transmission techniques, line coding techniques, optic heterodyne receivers, thermal and shot noise, bit error rates, and optical transmission system design. Optical T-carrier systems and SONET, and future directions. The course may require significant lab and/or project activity. Prerequisite: PHYS 230-231 and CES 440, or consent of instructor.

CES 544 WIRELESS COMMUNICATION (3)
Lecture, 3 hours. Introduction to mobile/wireless communication systems, cellular communication, data transmission and signaling, noise and intelligence, analog and digital techniques, and multiple-access architecture. The course requires lab and/or project activity. Prerequisites: ES 230-231 and CES 440, or consent of instructor.

CES 546 DATA COMPRESSION (3)
Lecture, 3 hours. Information theory, models, lossless compression (statistical, dictionary, static, dynamic, huffman, arithmetic, and context-modeling), lossy compression (scalar quantization, vector quantization, differential encoding, subband transform, and predictive), and compression standards (JPEG, MPEG). Prerequisites: ES 314 or consent of instructor.

CES 547 DIGITAL SWITCHING TECHNIQUES AND ARCHITECTURES (3)
Lecture, 3 hours. Review of switching techniques, synchronous and asynchronous transfer modes (i.e., STM and ATM), and various switch architectures. Multi rate and multipoint-to-multipoint switching, ATM switching, signaling and call set-up, ATM switch-architectures and their performance evaluation, and multicasting techniques. VLSI implementation considerations, and future directions. The course may require significant lab and/or project activity. Prerequisites: MATH 345, ES 230-231 and CES 440 or consent of instructor.

CES 550 INTEGRATED DIGITAL NETWORKS (3)
Lecture, 3 hours. Information types and signals, definitions of services and integration, narrow ISDN and frame relay protocols, broadband ISDN concept and protocol, and integrated environment and ATM, principles of SONET and ATM transmission, broadband ATM networking, and future trends. The course may require significant lab and/or project activity. Prerequisite: CES 440 or consent of instructor.

CES 552 NETWORK ARCHITECTURE AND PROTOCOLS (3)
Lecture, 3 hours. ISO model, review of the physical and data link layers, network layer and routing including for internet, multicast routing, TCP and UDP protocols their characteristics, performance and limitations, TCP/IP stack, applications such as a FTP, e-mail and DNS, and voice over IP. The course may require significant lab and/or project activity. Prerequisite: CES 440 or consent of instructor.

CES 554 BROADBAND ACCESS TECHNOLOGY (3)
Lecture, 3 hours. Review of ISDN and B-ISDN Protocols, digital subscriber loops, digital modems, the xDSL technology, xDSL family of protocols, ADSL standardization (its architecture, operation, implementation and management), ATM, TCP/IP, and Ethernet transmissions using ADSL, optical access. The course may require significant lab and/or project activity. Prerequisite: CES 440 or consent of instructor.

CES 558 MULTICASTING ON THE INTERNET (3)
Lecture, 3 hours. Multicasting fundamentals, multicast routing algorithms, IP multicast, architecture and operation of MOSPF, PIM, CBT, OCBT, HDVMRP, HPI, BGM, and Mbone protocols, real-time transport protocol and scalable reliable multicast, reliable multicast transport protocols, multicasting in ATM networks, IP multicast over ATM, and future directions. The course may require significant lab and/or project activity. Prerequisite: CES 552 or consent of instructor.
Counseling (COUN)

COUN 496 Migrant-Education Advisor Program (1-4)
School-based counseling experience supervised by Counseling department faculty. Under the guidance of the instructor, undergraduate students advise, counsel, and mentor K-12 students with a migrant background. Prerequisite: participation in the Migrant Education Advisor Program (MEAP) and consent of the instructor.

COUN 501 Theory and Practice: Professional Counselor (4)
This course surveys the roles and responsibilities of professional counselors, including an examination of students’ professional identity development. Different approaches to counseling intervention (i.e., psychodynamic, affective/ experiential, cognitive-behavioral, narrative approaches, and systemic theories) are compared and contrasted relative to the goals of counseling, the factors involved in helping individuals and families change, and the practitioner’s role in the process. Professional identity development is further enhanced through exposure to the history and philosophy of the counseling profession, including professional roles, functions, and relationships with other human service providers. This overview also acquaints counseling students with a) relevant professional organization; b) the various credentialing, certification, licensure, and accreditation standards that may impact practice; c) advocacy processes to benefit clients; and d) ethical and legal standards of the various counseling disciplines.

COUN 502A Adult Development: Individual, Family, and Career (3)
This course is designed to provide students with an overview of theories for understanding the processes of adult development and how to incorporate this understanding into counseling interventions. Students will discuss clinical cases within the context of adult transitions and life events, including long term care concerns and elder abuse. Gender, sexual orientation, and ethnicity issues will be integrated into both didactic and experiential learning. Changes in career, interpersonal relationships, and family structure and dynamics will be examined over the life span with an emphasis on their interdependence.

COUN 502B Career Development in Adulthood (1)
COUN 502B focuses more specifically on career counseling, including theories of career development, knowledge of interviewing, assessment, and print and computer-based career counseling materials. Further considered are how diversity issues influence personal needs, values, aptitudes, abilities, and interests, which in turn, affect career and educational choices.

COUN 503 Sem: Dynamics of Individual Behavior (3)
A course designed to cover psychopathology and sociopolitical-related issues of diagnosis and treatment. Attention is given to: (1) understanding the variability of psychopathology in community counseling settings; (2) the application of evaluation methods and diagnostic classification systems of the DSM-IV-TR; (3) development of appropriate treatment plans; and (4) the relationship of class, gender, and ethnic background to diagnosis and treatment.

COUN 510A Sem: Counseling Pre-Practicum (4)
A course that provides students an opportunity to develop necessary basic counseling skills to prepare them for an internship in a wide variety of settings. Training is done through the use of videotape feedback and in-class practice demonstrations involving personal disclosure, role-play, and group and instructor feedback. This course is normally taken in the first semester by new students. Recommend previous or concurrent enrollment in COUN 501. Cr/NC only.

COUN 510B Counseling Practicum (4)
A course that provides students with an opportunity to continue the development of counseling skills necessary for an internship. There are different sections for Community Counseling/MFT and School Counseling/PPS students: Community Counseling/MFT students see clients, and School Counseling/PPS students work in school settings under the instructor’s supervision. Cr/NC only. Prerequisite: COUN 510A.