BUS 593 SEMINAR IN INTERNATIONAL BUSINESS (3)
Comprehensive view of the international economic environment as it relates to
international business. Topics include the multinational corporation, subcontract-
ning, counter trade and international institutions such as the World Bank and GATT.
Prerequisite: ECON 501.

BUS 595 SPECIAL STUDIES IN BUSINESS ADMINISTRATION (1-3)
Supervised independent study. A maximum of 3 units may be applied toward the
requirements for the M.B.A. degree. Prerequisite: consent of faculty member under
whom the individual work is to be conducted, consent of the M.B.A. coordinator, and
approved “Application for Special Study 495/595.”

BUS 596 GRADUATE INTERNSHIP (1-3)
Field experience for qualified graduate students in business administration. A
maximum of 3 units may be applied toward the requirements for the M.B.A. degree.
Students must establish with the M.B.A. coordinator that the work involved is clearly
integral to the student’s graduate studies. CR/NC grade only.

BUS 599 MASTER’S DEGREE DIRECTED RESEARCH (1-3)
Research directed by the student’s committee on a project. An Advancement to
Candidacy Form GSO 1 must be filed with the MBA Coordinator before the student
registers for this course.

CHEM 105 ELEM OF GENERAL, ORGANIC AND BIOCHEM (5)
Lecture, 4 hours; laboratory, 2 hours. A survey of the principles of chemistry, with
emphasis placed on those that apply to living organisms. The course is designed
for students in nursing and majors that do not require further courses in chemistry.
Course is not a prerequisite for any chemistry course. Satisfies GE, category B1
(Physical Sciences) and GE laboratory requirement.

CHEM 107 INTRODUCTION TO PHYSICAL SCIENCE FOR TEACHERS (3)
Lecture, 3 hours. A non-mathematical course designed to introduce students to a
range of topics in physics and chemistry that are required by the California Science
Standards for grades K-8, including the laws of motion, energy, the structure of
matter, the states of matter, electricity and magnetism, light and optics. Lectures
include many demonstrations to illustrate physical science principles and students
will be asked to think about how they would demonstrate or explain various
concepts.

CHEM 110 INTRODUCTORY GENERAL CHEMISTRY (3)
Lecture, 3 hours. Develop fundamental knowledge and necessary skills in General
Chemistry for students who plan to major in science or pre-health programs.
Recommended for students with no prior chemistry background or as a refresher
course to enhance an insufficient chemistry background. Topics covered include
the scientific method, word problem analysis, significant figures, scientific notation,
unit conversion, periodic table, chemical equations, fundamental laws of matter
and energy, the mole concept and stoichiometry. Prerequisite: Satisfaction of ELM
requirement. Cr/NCr or graded. Satisfies GE category B1. Fall only.

CHEM 115A GENERAL CHEMISTRY (5)
Lecture, 3 hours; laboratory 3 hours. Principles of chemistry for students in science,
pre-health and related areas of study. This course will introduce students to science
and scientific thought by using problem-solving strategies in both a conceptual and
mathematical manner. First semester topics include atomic and molecular structure,
states of matter, chemical reactions, stoichiometry and thermodynamics. Second
semester topics include kinetics, equilibrium, buffers, and electrochemistry. Satis-
flies GE, category B1 (Physical Sciences), and laboratory requirements.

CHEM 115B GENERAL CHEMISTRY (5)
Lecture, 3 hours; laboratory 3 hours. Continuation of CHEM 115A. Prerequisite:
CHEM 115A. Satisfies GE, category B1 (Physical Sciences), and laboratory require-
ments.

CHEM 125A QUANTITATIVE GENERAL CHEMISTRY (5)
Lecture, 3 hours; discussion 1 hour; laboratory 3 hours (5 units). This one-year
analytical general chemistry course is designed for Chemistry majors, Biochemistry
majors, or others interested in chemical fields who have taken High School Chem-
istry or equivalent. This first semester course (CHEM 125A) will focus on: statistics,
atomic structure, stoichiometry, gas laws, redox reactions, equilibrium, and acid/
base reactions. Prerequisite: high school chemistry or equivalent.

CHEM 125B QUANTITATIVE GENERAL CHEMISTRY (5)
Lecture, 3 hours; discussion 1 hour; laboratory 3 hours (5 units). The second
semester (CHEM 125B) starts by applying the topics covered in the first semester to
chemical literature, chromatography, spectroscopy, biological chemistry, thermody-
namics, electrochemistry, quantum mechanics, bonding, and kinetics. After comple-
tion of this course students will receive credit for the full year of general chemistry
and one semester of quantitative analysis (CHEM 255). Prerequisite: CHEM 125A.
CHEM 255 QUANTITATIVE ANALYSIS (4)
Lecture, 2 hours; laboratory, 6 hours. Theory and practice of methods of analysis, including volumetric, gravimetric, and selected instrumental techniques. Prerequisite: CHEM 115B.

CHEM 275 INSTRUMENTAL ANALYSIS (2)
This course focuses on the theory behind commonly used chemistry instruments. Lecture will focus on analysis of spectroscopic data (molecular transitions), an overview of instrumental hardware, and principles of chromatography. Topics include basic electronics, statistics, optics, signal to noise detectors, IR, optical, NMR and fluorescence spectroscopy, mass spectrometry, atomic absorption, and chromatography.

CHEM 310A FUNDAMENTALS OF PHYSICAL CHEMISTRY (3)
Lecture, 3 hours. Development and applications of the concepts of thermodynamics, equilibrium, kinetics, quantum mechanics, and spectroscopy to chemical systems. Prerequisites: CHEM 255; CHEM 125B; MATH 211S; PHYS 210AB or 214 and 216; or consent of instructor.

CHEM 310B FUNDAMENTALS OF PHYSICAL CHEMISTRY (3)
Lecture, 3 hours. Continuation of CHEM 310A. Prerequisite or co-requisite of CHEM 310A required; or consent of instructor.

CHEM 315 INTRODUCTION TO RESEARCH METHODS IN CHEMISTRY (1)
Chemistry 315 is designed for chemistry majors but may be taken by others. Students will learn about the research in Chemistry at SSU and then will choose a research project with a faculty mentor. This course will focus on preparation of a proposal to be performed in the subsequent semester.

CHEM 316 RESEARCH METHODS IN CHEMISTRY (2)
Chemistry 316 is the second part of a year-long course designed for chemistry majors. Students will execute the research proposal developed in CHEM 315. Research will be done under the mentorship of faculty. Students will meet weekly to discuss research progress. Students will conclude the semester with a research manuscript.

CHEM 325 INORGANIC CHEMISTRY (3)
Lecture, 3 hours: Atomic structure, symmetry and group theory of small molecules and the relationship of these concepts to bonding theory and molecular spectroscopy. Applications of symmetry and group theory to coordination chemistry of transition metal complexes in organometallic, environmental, bioinorganic, and materials chemistry. Other topics include kinetics and reaction mechanism of inorganic and organometallic compounds including electron transfer. Prerequisites CHEM 310B, or concurrent enrollment.

CHEM 335A ORGANIC CHEMISTRY (3)
Lecture, 3 hours. A study of the fundamental principles of organic chemistry including bonding, electrophilicity, nucleophilicity and molecular shapes and geometry for organic compounds. Applies these concepts to the study of the properties, syntheses and reactions of major classes of organic compounds. A special emphasis is given to reaction mechanisms. Prerequisite: CHEM 115B; CHEM 125A or consent of instructor.

CHEM 335B ORGANIC CHEMISTRY (3)
Lecture, 3 hours. Continuation of CHEM 335A. Prerequisite: CHEM 335A.

CHEM 335A Organic Chemistry Lab I (2)
Laboratory lecture, 1 hour; laboratory, 3 hours. Fundamental techniques in organic chemistry, emphasizing separation techniques, modern instrumental methods, and qualitative organic analysis. Designed to complement CHEM 335A. Prerequisite/co-requisite: CHEM 335A

CHEM 335B Organic Chemistry Lab II (2)
Laboratory lecture, 1 hour; laboratory, 3 hours. Fundamental techniques of organic chemistry, emphasizing synthetic organic chemistry, modern instrumental methods, and qualitative organic analysis. Designed to complement CHEM 335B. Prerequisite or co-requisite of CHEM 335B required.

CHEM 397 CHEMISTRY PRACTICUM (1-6)
Supervised chemistry work experiences that involve practical application of previously studied theory. Intended for professional growth and/or collection of data for future theoretical interpretation. Not applicable toward the chemistry major or minor. May be repeated for up to a total of 6 units. Two hours of work per week for each unit of credit. Cr/NC only. Prerequisite: junior-level standing or consent of instructor.

CHEM 401 SENIOR INTEGRATED LAB (3)
This course focuses on making connections between the sub-disciplines of chemistry by performing experiments that cross over between these sub-disciplines in this capstone course. Students will perform experiments independently. Students will learn to properly write up their results in a format similar to published papers. Prerequisites: CHEM 255, 275 and 310A/B or consent of instructor.

CHEM 402 ADVANCED SYNTHESIS AND INSTRUMENTAL ANALYSIS (3)
Lecture, 1 hour; laboratory 6 hours. Project-based synthesis, purification and characterization of inorganic, organic and organometallic molecules. Capstone course for BS chemistry degree. Topics will include air-sensitive syntheses, standard Schlenk line techniques, characterization through IR, optical and NMR spectroscopy, mass spectrometry and electrochemistry. Prerequisite: CHEM 401. Highly recommended: CHEM 325, or consent of instructor.

CHEM 441 BIOCHEMICAL METHODS (3)
Project based course involving characterization of proteins from natural sources utilizing biochemical methods and experimental design techniques common in biotechnology and research. Capstone course for biochemistry degree. Offered in spring only. Prerequisites: CHEM 445 or 446 (may be concurrent), CHEM 255 and a foundation in spectroscopy, kinetics strongly recommended.

CHEM 445 STRUCTURAL BIOCHEMISTRY (3)
Lecture, 3 hours. A study of the structure: function relationships of amino acids, proteins, enzymes, carbohydrates, lipids and nucleic acids. Also includes topics such as enzyme kinetics, membrane transport and signaling. Only offered in the fall. Prerequisites: CHEM 335B or CHEM 232 and a foundation in kinetics and thermodynamics, or consent of instructor.

CHEM 446 METABOLIC BIOCHEMISTRY (3)
Lecture, 3 hours. A study of bioenergetics and the metabolism of biological molecules including carbohydrates, lipids, nucleic acids, and proteins. This course is only offered in the spring. Prerequisites: CHEM 335B or CHEM 232, CHEM 445 or BIOL 123, and a foundation in kinetics and thermodynamics, or consent of instructor.

CHEM 492 CHEMISTRY SEMINAR SERIES (1)
Invited speakers from universities and industry will present on current topics in the chemical and biochemical fields. May be repeated; does not count towards the major.
CHEM 494 UNDERGRADUATE RESEARCH (1-6)
This course serves as a ‘senior experience’ for our graduating majors. Under supervision by the chemistry faculty, students will participate in individual investigations of student- or faculty-initiated chemical problems. May be taken only by petition to the Chemistry Department. May be repeated. Prerequisites: consent of instructor.

CHEM 495 SPECIAL STUDIES (1-3)
Investigation of existing information on a specific or general topic of interest to the student. May be repeated. Prerequisite: consent of instructor; upper-division standing in chemistry or closely related science.

CHEM 496 SELECTED TOPICS IN CHEMISTRY (1-6)
A study of an advanced topic in chemistry. May be repeated for credit with new subject matter.

CHEM 497 RESEARCH SEMINAR (1)
Laboratory, 3 hours. Capstone course for B.A. and B.S. degrees. The course will focus on techniques involved in the preparation and delivery of technical seminars. This final project will be a formal oral presentation to the chemistry department on a research paper from the chemical literature or the student’s undergraduate research project. Instruction includes the appropriate coverage of the selected topic, use of the chemical literature, and the preparation and use of PowerPoint, graphic and web-based applications to create an informative talk. Prerequisites: senior standing or consent of instructor.

CHEM 499 INTERNSHIP (1-4)
Chemistry field experience in industrial, hospital or similar laboratory settings. Enrollment by prior arrangement with supervising faculty member and community sponsor. Please see department advisor for details. Three hours of work per week for each unit of credit. Internship assignments may be paid. Cr/NC only. May be repeated.

Chicano and Latino Studies (CALS)

CALS 160A HUMANITIES LEARNING COMMUNITY (2)
CALS 160 A / B is a year long course, which, combined with Phil 101 A / B, features weekly lectures and small seminars. It constitutes a Humanities Learning Community (HLC) for any first-year student. The learning objectives of the HLC will satisfy A3 (Critical Thinking) and C3 (Comparative Perspectives and/or Foreign Languages) GE categories.

CALS 160B HUMANITIES LEARNING COMMUNITY (2)
CALS 160 A / B is a year long course, which, combined with Phil 101 A / B, features weekly lectures and small seminars. It constitutes a Humanities Learning Community (HLC) for any first-year student. The learning objectives of the HLC will satisfy A3 (Critical Thinking) and C3 (Comparative Perspectives and/or Foreign Languages) GE categories.

CALS 219 THE LATINO EXPERIENCE (3)
A survey of the Chicano and Latino experience in the United States. The course serves as an introduction to Chicano and Latino studies through the social sciences in order to explain the individual’s status and place within the group and society. This includes how Chicano and Latinos and other Latinos have adapted to the various cultural, social, economic, and political elements of U.S. society as compared to other groups. Satisfies ethnic studies requirement in GE, category D1 (Individual and Society).

CALS 220 LATINA/O ARTS AND HUMANITIES (4)
This course considers how individuals and communities define and are defined by their cultural practices by focusing on the ways these dynamics play out in Latina/o communities. It surveys Latina/o contributions to literature, drama, theater, cinema, mass media, popular and fine art, music and dance and considers how these contributions reflect and challenge the nature and meaning of race and ethnicity in the United States. This course satisfies C3 and Ethnic Studies General Education requirements.

CALS 225 SPANISH FOR BILINGUALS (4)
This course is designed to systematically develop a confidence in native speakers’ ability to write and communicate effectively in the Spanish language. The class will be conducted entirely in Spanish. Prerequisites: Native fluency in Spanish. Satisfies GE category C3 (Comparative Perspectives and/or Foreign Languages). This course does not satisfy GE ethnic studies requirements.

CALS 225L LANGUAGE LABORATORY/FIELD WORK (1)
At least two hours per week of practice in the language laboratory or in an approved fieldwork setting such as a Spanish-speaking organization, community agency or bilingual classroom. Cr/NC only. Prerequisite: concurrent enrollment in CALS 225.

CALS 301 CALS LEADERSHIP AND MENTORING (1)
A supervised, guided process where senior-level majors in CALS coach and mentor newly declared majors after having been coached by a senior student the previous semesters. Elective units. May be enrolled for more than once.

CALS 310 CHICANO/LATINO ARTS AND CRAFTS WORKSHOP (1)
Analysis of and workshop on providing Chicano Mexican and other Latino arts and crafts. Includes village and folk arts, with particular emphasis toward adapting these arts to the public school curriculum. Course projects require a public exhibit.