ES 101A COMMUNICATION IN THE DIGITAL AGE (3)
Concept of digital age, technology and modern communications, understand-
ing various routinely used technical terms and commonly known computer and
communications components and devices; understanding digital voice, video and
data communication, mobile communication and communication through internet;
ill effects such as radiation, invasion of privacy, unethical usages and protection
from them; assessment of learning. (The companion laboratory course ES 101B is
strongly recommended; the course does not apply to ES major). Prerequisite: GE
Math eligibility. GE Area: This course meets GE Area B3 requirement.

ES 101B COMMUNICATION IN THE DIGITAL AGE LABORATORY (1)
Laboratory to demonstrate the concepts discussed in the course ES 101A and give
hands-on experience to the students. (Does not apply to ES major). Co-requisite: ES
101A, or permission of the instructor. GE Area: This course meets the GE science
laboratory requirement.

ES 110 INTRODUCTION TO ENGINEERING AND LABORATORY
EXPERIENCE (2)
Lecture, 1 hour; laboratory, 3 hours. This course is designed to introduce principles
of engineering to the students and expose them to the electronics and computer lab
environment. The students are given opportunity to design and build some simple
analog and digital circuits and make measurements using various types of lab
equipment.

ES 112 FUNDAMENTALS OF DIGITAL LOGIC DESIGN (1)
Lecture, 1 hour. Review of set theory and binary system, digital logic, Venn
diagram, logic gates, minimization techniques, combinatorial logic and design of
simple combinatorial logic circuits such as 1-bit adder; concept of coders, decod-
ers and integrated circuits. Prerequisite: ES 110 and MATH 142E or consent of
instructor.

ES 210 DIGITAL CIRCUITS AND LOGIC DESIGN (4)
Lecture, 3 hours; laboratory, 3 hours. Logic gates, combinatorial logic and analysis
and design of combinational circuits, electronic circuits for various logic gates. Flip-
flops, registers, and counters, sequential circuits and state machines. Various logic
families and comparison of their electrical characteristics such as fan-out, rise and
fall times, delay, etc. Concepts of machine, assembly and high level languages and
relationship between them, basic principles of computer design. Laboratory work
will include designing, building and testing of digital circuits, logic and sequential
circuits. Prerequisite: ES 112. Co-requisite: ES 230 or consent of instructor.

ES 220 ELECTRIC CIRCUITS (3)
Lecture, 3 hours. Review of Kirchhoff's laws, circuit design, node and mesh analy-
sis, etc.; Thevenin's theorem, Norton's theorem, steady state and transient analysis,
transfer function. AC power and three-phase circuits, Y-Delta equivalents. Multi-port
networks, two-port networks with energy storage, ideal transformers. Amplifiers
and frequency response, filters. Prerequisites: ES 110 and MATH 211; Co-requisite:
ES 221 and PHYS 214, or consent of instructor.

ES 221 ELECTRIC CIRCUITS LABORATORY (1)
Laboratory, 3 hours. Laboratory work on material treated in ES 220 emphasizing
elementary design principles. Prerequisite: ES 110 and co-requisite: ES 220.

ES 230 ELECTRONICS I (3)
Lecture 3 hours. Theory, characteristics and operation of diodes, bipolar junction
transistors and MOSFET transistors; analog and digital electronic circuits; design
and analysis of analog electronic circuits such as filters, operational amplifiers,
single and multistage amplifiers; modeling and simulation using spice/multisim
software. Prerequisite: ES 220 and 221 and co-requisite: ES 231 or consent of
Instructor.

ES 231 ELECTRONICS I LABORATORY (1)
Laboratory, 3 hours. Laboratory work to accompany ES 230. Computer assisted de-
sign of electronic circuits involving devices such as diodes and transistors. Design,
building and testing of electronic circuits such as filters, oscillator, amplifiers, etc.
Co-requisite: ES 230.

ES 310 MICROPROCESSORS AND SYSTEM DESIGN (4)
Lecture, 3 hours; laboratory, 3 hours. Hardware architecture of a microprocessor
and its programming and instruction design, memory hierarchy and I/O interfaces,
comparison of various microprocessor architectures and capabilities, system design
using microprocessors. Laboratory work. Prerequisites: ES 210 and ES 230; or
consent of instructor.

ES 314 ADVANCED PROGRAMMING, MODELING AND
SIMULATION (4)
Lecture, 4 hours. Pointers and dynamic allocation of storage; linked lists; an intro-
duction to the object oriented programming (OOP) paradigm; classes and objects;
encapsulation; member variables and member functions. Static arrays, dynamic ar-rays, stacks and queues, linked lists, trees, binary search trees, balanced trees (AVL,
red-black, B-trees), heaps, hashing and graphs. System modeling techniques and
applications such as generation of noise (random numbers) and correlated signal
with different pdfs, measurement of statistical parameters like moments, queueing
systems and system simulation. Prerequisite: CS 115: Programming I. Co-requisites:
MATH 345: Probability Theory and ES 220: Electric Circuits, or consent of instructor.

ES 330 ELECTRONICS II (2)
Lecture, 2 hours. Output stage design of the amplifiers, on-linear op-amp circuits,
differential amplifiers, common mode and differential mode circuit analysis, half-cir-
cuit analysis, study of current mirrors and active load design, analysis of two stage
active load CMOS op-amp, high frequency models of BJT and MOSFET, analysis of
low and high frequency responses of amplifiers, open circuit time constant (OTC)
and short circuit time constant (STC), study of tuned amplifier. Prerequisite: ES 230
or consent of instructor.

ES 345E ENGINEERING APPLICATIONS OF PROBABILITY THEORY (1)
Lecture, 1 hour. This is a one-unit course introducing how to apply probability the-
tory to model engineering problems, particularly in communications and networking
areas. Topics covered include application of probability to measure of information
and redundancy, moments to measure power, correlation to determine correlation
function, power spectrum and linear prediction and estimation of statistical param-
eters. Co-requisite: Math 345E or consent of instructor.

ES 400 LINEAR SYSTEMS THEORY (3)
Lecture, 3 hours. Analysis of linear time-invariant systems, correlation, convolu-
tion, impulse response, complex variables, Fourier series and transform, sampling,
filtering, modulation, stability and causality, feedback and control systems, Laplace
and Z-transform, fast Fourier transforms. Prerequisite: MATH 241 or consent of
Instructor. (Cross-listed as MATH 430 and CES 400)
ES 430 Electromagnetic Theory and Applications (3)
Lecture, 3 hours. Electrostatics, magnetostatics, electric currents, electromagnetic induction, electric and magnetic fields in matter, Maxwell’s equations, retarded potentials radiation reaction, light emission, simple scattering and antenna theory, properties of waveguides, relativistic formulation of electrodynamics, Fourier decomposition of fields. Prerequisites: ES 220, MATH 241 and MATH 261.

ES 432 Physical Electronics (3)
Lecture, 3 hours. Semiconductor materials, crystal structure and growth; energy bands and charge carriers, conductivity and mobility; metal-semiconductor and p-n junctions; p-n junction diodes, bipolar junction transistors, field-effect transistors, CCD's, photonic devices and integrated circuits. Projects in photolithography; conductivity and contact resistance measurements; I-V and C-V characteristics of diodes; characterization of transistors may be assigned. Prerequisites: ES 230 or consent of Instructor. (Cross-listed as PHYS 445 and CES 430)

ES 440 Analog and Digital Communications I (3)
Lecture, 2 hours; laboratory, 3 hours. Mathematical modeling of signals, time and frequency domain concepts, spectral density, components of a communications system, analog signal transmission. AM, FM and PM modulation and demodulation techniques, noise and bandwidth, link analysis. Laboratory work. Prerequisites: ES 230, and ES 440 or consent of instructor.

ES 441 Analog and Digital Communications II (3)
Lecture, 2 hours; laboratory, 3 hours. Digital signals and their transmission, PCM, log-PCM, ADPCM and DM and other low bit rate coders. Digital data transmission, data encoding, clock recovery and BER, data modulation techniques, ASK, FSK, PSK and QAM. Link budgets for satellite, cellular, and cable systems, the effects of noise and bandwidth. Laboratory work. Prerequisite: ES 314 and ES 440 or consent of instructor.

ES 442 Analog and Digital Communications (4)
Lecture, 3 hours; laboratory, 3 hours. Mathematical modeling of signals, time and frequency domain concepts, spectral density, components of a communications system, analog signal transmission; Analog modulation and demodulation techniques, FDM, noise and bandwidth; Digital signals and their transmission, PCM and low bit rate coders, TDM, data encoding for efficient baseband digital transmission, digital data modulation. Laboratory work consistent with the lecture topics covered. Prerequisite: ES 230 and ES 440, or consent of instructor.

ES 443 Introduction to Optical Fiber Communications (3)
Lecture, 3 hours. Principles of light wave propagation, and propagation in an optical fiber, fiber characteristics, O/E and E/O conversions, coupling, WDM, modulation techniques for efficient information transmission, system design. Prerequisite: ES 430 and co-requisite: ES 442 or consent of the instructor.

ES 445 Photonics (3)
Lecture, 3 hours. Gaussian beams; guided-wave optics; fiber optics; optical resonators; resonant cavities; laser oscillation and amplification; laser excitation; optical pumping; solid state, gas, dye, chemical, excimer and free electron lasers; semiconductor lasers; laser spectroscopy; fiber optic communication; photomultiplier and semiconductor radiation detectors including photoconductors, junction photodiodes; p-i-n diodes, avalanche photodiodes; detector noise. Prerequisite: PHYS 314 or consent of Instructor. (Cross-listed as PHYS 445 and CES 430)

ES 465 Introduction to Networking and Network Management (3)
Lecture, 2 hours; laboratory, 3 hours. The ISO reference model, theoretical basis for data communications, data transmission theory and practice, telephone systems, protocols, networks, internetworks, with examples. Prerequisites: ES 314 and ES 440 or consent of Instructor. (Cross-listed as CES 440)

ES 480 Artificial Intelligence (3)
A survey of techniques that simulate human intelligence. Topics may include: Pattern recognition, general problem solving, adversarial game-tree search, decision making, expert systems, neural networks, fuzzy logic, and genetic algorithms. Prerequisites: ES 314 or consent of Instructor.

ES 485 Selected Topics in Engineering Science (1-3)
A course on a single topic or set of related topics not ordinarily covered in the engineering science curriculum. The course may be repeated for credit as topics vary. Prerequisite: consent of instructor.

ES 492 Senior Design Project Planning (2)
Lecture, 1 hour; laboratory, 3 hours. This course is the first phase of the capstone course. In the lecture part, the students will learn design techniques, how to plan a project, evaluate and perform trade-offs, make project presentations and write project reports. In the laboratory parts, the students will choose a project, do planning, acquire parts, components and other resources needed and start the project work.

ES 493 Senior Design Project (3)
This is a capstone course. A major project designed to bring the knowledge gained from various courses together to analyze, design and implement an electronic and/or communications system in an efficient and economic manner. Prerequisite: Consent of the instructor.

ES 497 Engineering Science Colloquium (1)
Lecture, 1 hour. Series of lectures on topics of interest in the relevant fields of engineering. A maximum of 1 unit can be applied to the ES major. The students may not miss more than two presentations. A brief summary of each presentation must be submitted after the presentation. The course grade is decided on evaluation of these reports. Cr/NC only.