Computer and Engineering Science (CES)

CES 400 Linear Systems Theory (3)
Lecture, 3 hours. Analysis of linear time-invariant systems, correlation, convolution, impulse response, complex variables, Fourier series and transform, sampling, filtering, modulation, stability and causality, feedback and control systems, Laplace and Z-transform, fast Fourier transforms. Prerequisite: MATH 241 or consent of instructor. Cross-listed as MATH 430 and ES 400.

CES 430 Photonics (3)
Lecture, 3 hours. Lasers, diode lasers and LED's, fiber optics, and optical radiation detectors. Prerequisites: a course in modern Physics (such as PHYS 314) and electromagnetism (such as PHYS 430). Cross-listed as PHYS 445 and ES 445.

CES 432 Physics of Semiconductor Devices (3)
Lecture, 3 hours. Semiconductor materials, crystal structure and growth, energy bands and charge carriers, conductivity and mobility, metal semiconductor and p-n junctions, p-n junction diodes, bipolar junction transistors, field effect transistors, CCD's, and photonic devices and integrated circuits. Projects in photolithography, conductivity, and contact resistance measurements; I-V and C-V characteristics of diodes; and characterization of transistors may be assigned. Prerequisite: ES 230 or PHYS 314 or consent of instructor. Cross-listed as PHYS 475 and ES 432.

CES 440 Introduction to Networking and Network Management (3)
Lecture, 2 hours; laboratory, 3 hours. The major topics covered in this course are: ISO reference model, theoretical basis for data communications, data transmission theory and practice, telephone systems, protocols, networks, internetworks, with examples. Prerequisites: ES 440 or consent of instructor. Cross-listed as ES 465.

CES 490 Selected Topics in CES (1-3)
This course focuses on special topics to introduce new emerging fields, provide foundation for advanced graduate level courses, or augment other courses in computer and engineering science. Prerequisite: consent of instructor.

CES 494 Directed Readings (1-3)
Independent study under a faculty member. The proposal must be approved by the graduate advisor if the course is to apply towards degree requirements. Prerequisite: consent of instructor.

CES 500 Queuing and Transform Theory (3)
Lecture, 3 hours. Topics include review of probability theory, fundamentals of transform theory, Fourier, and Z-transforms. Markovian and discrete time queuing systems, single and multi server queuing networks, and their applications. The course may require significant lab and/or project activity. Prerequisite: ES 314 or consent of instructor.

CES 506 Operations Management (3)
Production/operations management of manufacturing and service operations. Topics include forecasting and scheduling, material requirements planning, and quality assurance. Additional tools include inventory control, project management, and product development. Modern techniques such as Supply Chain Management, e-business, Just-in-Time, and Total Quality Management are illuminated. Cross-listed as BUS 516.

CES 510 Intelligent Systems Design (3)
Lecture, 3 hours. Introduction to adaptive systems: neural networks, genetic algorithms (GAs), fuzzy logic, simulated annealing, tabu search, etc. Specific topics include perceptions, backpropagation, Hopfield nets, neural network theory, simple GAs, parallel GAs, cellular GAs, schema theory, mathematical models of simple GAs, and using GAs to evolve neural networks. Prerequisites: ES 314 and CES 400, or consent of instructor.

CES 512 Theory of Software Systems (3)
Lecture, 3 hours. Review of data structures and basic algorithms for sorting, searching, and string processing. Basics of logic, formal systems, grammars, and automata. Applications to some of the following areas: design of language processing tools (editor, translator etc.), software specification, testing and verification, and non-numerical problem solving. The course may require significant lab and/or project activity. Prerequisite: ES 314 or consent of instructor.

CES 514 Data Mining (3)
Lecture, 3 hours. This course is an introduction to data models, data warehousing, association-rule mining, searching the Web, and Web Mining: Clustering, Al techniques (neural networks, decision trees), applications, and case studies. The course may require significant lab and/or project activity. Prerequisite: ES 314 or consent of instructor.

CES 516 High-Performance Computing (3)
Lecture, 3 hours. The major topics covered in this course are: algorithmic tools and techniques for problems hard to solve on a standard uniprocessor model such as problems involving large data sets or real-time constraints; development of computational models to analyze the requirements and solutions and special hardware based solutions; and case studies to illustrate the developed models, tools, and techniques. The course may require significant lab and/or project activity. Prerequisite: ES 314 or consent of instructor.

CES 520 Embedded Systems (3)
Lecture, 3 hours. Three major topics covered in this course are: controlling specialized I/O devices with particular attention to bit patterns and priority interrupts; waveshapes and measurement tools, both hardware and software; and real time operating systems. Prerequisites: ES 230, 231, and 310, or consent of instructor.

CES 522 VLSI Design (3)
Lecture, 3 hours. The major topics covered in this course are: IC technology review, hardware description languages and describing hardware using one of the languages, modern VLSI design flow, circuit partitioning, and clustering. Floorplanning, placement, global routing, area efficient design, and area-time trade-offs are also covered. The course may require significant lab and/or project activity. Prerequisite: CES 530 or consent of instructor.

CES 524 Advanced Computer Architecture (3)
Lecture, 3 hours. The major topics covered in this course are: concept of advanced computing architectures, pipelining, multiprocessoring, single- and multi-stage interconnection networks, applications/algorithms for parallel computers, local and system business architectures, CPUs and computer system performance analysis. The course may require significant lab and/or project activity. Prerequisite: ES 310 or consent of instructor.

CES 530 Analog and Digital Microelectronics (3)
Lecture, 3 hours. Introduction to analog/digital integrated circuits, bipolar and MOS transistor models, analysis and design of monolithic operational amplifiers, frequency response, non-linear circuits and CMOS, and Bipolar Logic Circuits. The course requires lab and/or project activity. Prerequisites: ES 230, ES 231 and CES 432, or consent of instructor.

CES 532 Advanced Photonics Devices (3)
Lecture, 3 hours. The major topics covered in this course are: optical resonators, interaction of photons with materials, LEDs, laser diodes, optical amplifiers, optical noise, photoconductors, electrooptic modulators, photonic switches, and nonlinear optical materials and devices. The course requires lab and/or project activity. Prerequisite: CES 430 or equivalent.

CES 540 Digital Data Transmission (3)
The major topics covered in this course are: characteristics of base-band and band-pass channels, optimum signaling sets, and receivers for digital communications; effect of noise and intersymbol interference on probability of error; channel capacity; introduction to phase-locked loop analysis for timing; and carrier synchronization. Prerequisites: CES 400, and CES 440 or consent of instructor.
CES 542 DIGITAL SIGNAL PROCESSING (3)
Lecture, 3 hours. The major topics covered in this course are: time/frequency analysis of discrete-time signals and systems; fast implementations of the DFT and its relatives; IIR and FIR digital filter design, implementation, and quantization error analysis; and decimation, interpolation, and multirate processing. Prerequisite: CES 400 or consent of instructor.

CES 543 OPTICAL FIBER COMMUNICATIONS (3)
Lecture, 3 hours. The major topics covered in this course are: lightwave fundamentals; optical fiber as transmission media, losses and bandwidth; fiber cables; optical sources; detectors; optical components such as switches, access couplers, wavelength multiplexers and demultiplexers; analog and digital transmission techniques; line coding techniques; optic heterodyne receivers; thermal and shot noise; bit error rates; optical transmission system design; Optical T-carrier systems; SONET; and future directions. The course may require significant lab and/or project activity. Prerequisite: PHYS 230, PHYS 231 and CES 440, or consent of instructor.

CES 544 WIRELESS COMMUNICATION (3)
Lecture, 3 hours. Introduction to mobile/wireless communication systems, cellular communication, data transmission and signaling, noise and intelligence, analog and digital techniques, multiple-access architecture. The course requires lab and/or project activity. Prerequisites: ES 230-231 and CES 440, or consent of instructor.

CES 546 DATA COMPRESSION (3)
Lecture, 3 hours. The major topics covered in this course are: information theory; models; lossless compression (statistical, dictionary, static, dynamic, huffman, arithmetic, context-modeling); lossy compression (scalar quantization, vector quantization, differential encoding, subband transform, predictive); and compression standards (JPEG, MPEG). Prerequisite: ES 314 or consent of instructor.

CES 547 DIGITAL SWITCHING/TECHNIQUES AND ARCHITECTURES (3)
Lecture, 3 hours. This course is a review of switching techniques, synchronous and asynchronous transfer modes (i.e., STM and ATM), various switch architectures, multirate and multipoint-to-multipoint switching, ATM switching, signaling and call set-up, ATM switch-architectures and their performance evaluation, and multicasting techniques. VLSI implementation considerations, future directions. The course may require significant lab and/or project activity. Prerequisites: MATH 345, ES 230, ES 231, and CES 440, or consent of instructor.

CES 550 INTEGRATED DIGITAL NETWORKS (3)
Lecture, 3 hours. The major topics covered in this course are: information types and signals, definitions of services and integration, narrow ISDN and frame relay protocols, broadband ISDN concept and protocol, Integrated environment and ATM, principles of SONET and ATM transmission, broadband ATM networking, and future trends. The course may require significant lab and/or project activity. Prerequisite: CES 440 or consent of instructor.

CES 552 NETWORK ARCHITECTURE AND PROTOCOLS (3)
Lecture, 3 hours. The major topics covered in this course are: ISO model, review of the physical and data link layers, network layer and routing including for internet, multicast routing, TCP and UDP protocols and their characteristics, performance and limitations, TCP/IP stack, applications such a FTP, e-mail and DNS, and voice over IP. The course may require significant lab and/or project activity. Prerequisite: CES 440 or consent of instructor.

CES 554 BROADBAND ACCESS TECHNOLOGY (3)
Lecture, 3 hours. The major topics covered in this course are: review of ISDN and B-ISDN Protocols; digital subscriber loops; digital modems; the xDSL technology; xDSL family of protocols; ADSL standardization, its architecture, operation, implementation, and management; ATM; TCP/IP; Ethernet transmissions using ADSL; and optical access. The course may require significant lab and/or project activity. Prerequisite: CES 440 or consent of instructor.

CES 558 MULTICASTING ON THE INTERNET (3)
Lecture, 3 hours. The major topics covered in this course are: multicasting fundamentals; multicast routing algorithms; IP multicasting; architecture and operation of MOSPF, PIM, CB, HDVRMP, BGMP; MBone protocols; Real-time transport protocol and scalable reliable multicast; reliable multicast transport protocols; multicasting in ATM networks; and IP multicast over ATM, future directions. The course may require significant lab and/or project activity. Prerequisite: CES 552 or consent of instructor.

CES 561 COMPUTATIONAL TECHNIQUES FOR BIOMOLECULES (3)

CES 562 BIOMEDICAL INSTRUMENTATION (3)

CES 563 BIOPHOTONICS (3)

CES 564 MEDICAL IMAGE PROCESSING (3)

CES 590 SELECTED TOPICS IN COMMUNICATIONS AND PHOTONICS (3)
Special topics to augment regularly scheduled graduate courses in communications and photonics will be presented. Prerequisites depend on subject material.

CES 591 INTERNSHIP (1)
Internship will be done at an industry, R&D laboratory, government organization, or a laboratory or center at an academic institution to gain professional training, teamwork experience, communication skills, and project opportunities that will prepare students for a successful career.

CES 592 SELECTED TOPICS IN HARDWARE AND SOFTWARE SYSTEMS (3)
Special topics to augment regularly scheduled graduate courses in hardware and software systems will be presented. Prerequisites depend on subject material.

CES 592B SELECTED TOPICS IN BIOENGINEERING (3)
Lecture, 3 hours. Special topics to augment regularly scheduled graduate courses in bioengineering will be presented. Prerequisite: consent of the instructor.

CES 593 LABORATORY AND TECHNOLOGY REPORT EXPERIENCE (3)
Lecture, 1 hour; laboratory, 6 hours. In this course, students will learn to operate state-of-the-art equipment in at least 6 laboratories, perform experiments, and write lab reports. In addition, students will write a technical report on a state-of-the-art topic within the scope of the master’s program of at least 3000 words excluding figures and tables. (The course cannot be taken to meet 30-unit requirement under thesis or project option unless approved by the Program Director.) Prerequisite: permission of student’s advisor.

CES 594 DIRECTED READINGS (1-3)
Independent study under a faculty member. The proposal must be approved by the graduate advisor if it is to apply towards degree requirements. Prerequisite: consent of instructor.

CES 595 DESIGN PROJECT (1-3)
The project plan, timetable, necessary resources, and the expected outcome must be approved by a faculty project advisor and the program advisor at least one semester before taking the course. Prerequisites: admission of candidacy for the Master’s degree and approval of the faculty advisor.

CES 596 PROJECT CONTINUATION (1-3)
Designed for students working on their thesis or design project but who have otherwise completed all graduate coursework toward their degree. This course cannot be applied toward the minimum number of units needed for completion of the master’s degree. Prerequisite: consent of faculty thesis/project advisor.

CES 597 GRADUATE SEMINAR (1)
Series of lectures presented by experts from academia and industries.
Counseling (COUN)

COUN 496 Migrant-Education Advisor Program (1-4)
School-based counseling experience supervised by Counseling department faculty. Under the guidance of the instructor, undergraduate students advise, counsel, and mentor K-12 students with a migrant background. Prerequisites: participation in the Migrant Education Advisor Program (MEAP) and consent of the instructor.

COUN 501 Counseling Theories and Professional Orientation (4)
An orientation to professional counseling focusing on standards of practice, major counseling theories, and essential concepts in the practice of counseling including attention to concepts of resilience and recovery-based models. Advocacy, systems of care, services, support for the severely mentally ill, and collaborative treatment are addressed in both counseling and case management. Mental health principles, the history and philosophy of counseling, consultation, self-care, cultural competence, roles of professional organizations and governing bodies, and ethical standards of the discipline are presented. This course also includes focus on 1 unit of special topics toward the CA LPCC license.

COUN 502 Whole Lifespan Development (4)
This course offers a developmental perspective on counseling interventions appropriately undertaken with children, adolescents, and adults. Objectives include: (1) providing students with an introduction to basic intervention strategies for counseling children and adolescents, taking into account cultural and socio-economic influences; (2) familiarizing students with special topics, e.g., impact of divorce on children, child maltreatment, and effects of domestic violence; (3) consideration of family, peer, school, and community contexts in treatment planning (i.e., integrative case formulation) with children and adolescents; (4) identifying basic intervention strategies that facilitate adaptive change in adults’ lives, particularly in the context of significant transitions and life events; (5) addressing long term care and elder abuse; (6) consideration of gender, sexual orientation, and ethnicity issues; and (7) examination of changes in career, interpersonal relationships, family structure and dynamics with an emphasis on their interdependence. This course also incorporates focus on 1 unit of special topics toward the CA LPCC license. Course restricted to Counseling M.A. students only.

COUN 502P Whole Lifespan Development, Child & Adolescent Development (2)
This course offers a developmental perspective on counseling interventions appropriately undertaken with children and adolescents. Objectives include: (1) providing students with an introduction to basic intervention strategies for counseling children and adolescents taking into account cultural and socio-economic influences; (2) familiarizing students with special topics, e.g., impact of divorce on children, child maltreatment, effects of domestic violence; and (3) consideration of family, peer, school, and community contexts in treatment planning (i.e., integrative case formulation) with children and adolescents. Course restricted to Counseling MA students only.

COUN 502Q Whole Lifespan Development, Adult Development (2)
This course offers a developmental perspective on counseling interventions appropriately undertaken with adults. In this course students will discuss basic intervention strategies that facilitate adaptive change in adults’ lives, particularly in the context of significant transitions and life events (e.g., marriage, parenthood, illness or disability, menopause, retirement, aging, loss, and bereavement). Long term care and elder abuse will also be addressed. Gender, sexual orientation, and ethnicity issues will be integrated into both didactic and experiential learning. Changes in career, interpersonal relationships, and family structure and dynamics will be examined over the life span with an emphasis on their interdependence. This course also incorporates focus on 1 unit of special topics toward the CA LPCC license. Course restricted to Counseling MA students only.