Problem 1 FM and PM Relationship (8 points)

When we generate a “phase-modulated” signal modulated by message signal \(m_p(t) \); we simultaneously produce a frequency modulated signal. Of course, the frequency modulated signal corresponds to a different modulated waveform where we represent the message signal by \(m_f(t) \).

Write an equation stating the relationship between \(m_p(t) \) and \(m_f(t) \). [Hint: Equate the angles for both modulations.]

Problem 2 Mixer Used As a Phase Detector (10 points)

You are presented with the FM signal generator as shown in the schematic circuit below. A voltage controlled oscillator (VCO) is controlled by a voltage from the output of the mixer (phase detector) added to a slowly varying input message signal \(m(t) \). The output of the VCO is an FM signal centered about the desired carrier frequency \(f_c \). The crystal oscillator operates at \(1/N \) of the carrier frequency, where \(N \) is an integer. The reason for using a crystal oscillator is that it provides for a very stable frequency
(also, very stable crystal oscillators usually operate at lower frequencies than assigned carrier frequencies). Show how the mixer can be used as a phase detector outputting a voltage proportional to the phase difference between f_{osc} and f_c.

\[f_{osc} = \frac{f_c}{N} \]
Problem 3 Frequency Swing of an FM Signal (10 points)

In an FM system, a 7 kHz baseband signal modulates a 107.6 MHz carrier wave such that the frequency deviation Δf is 50 kHz.

(a) Find the carrier frequency swing of the FM signal and the modulation index β.
(b) Find the highest and the lowest frequencies attained by the FM signal.

Problem 4 Frequency Swing of an FM Signal (12 points)

(a) Determine the frequency deviation Δf and the carrier swing for an FM signal with a carrier frequency of 100 MHz and whose upper frequency swing is 100.007 MHz when modulated by signal $m(t)$.

(b) Find the lowest frequency swing experienced by this FM signal.
Problem 5 FM Signal Parameters (10 points)

An audio signal, with baseband of 200 Hz to 4 kHz, frequency modulates a carrier of frequency 50 MHz. The frequency deviation per volt is 10 kHz per volt and the maximum audio voltage it can transmit is 3 volts. Calculate both the frequency deviation Δf and the bandwidth BW of the FM signal.

Problem 6 FM Waveform (20 points)

The figure below shows an FM carrier modulated by a single-tone sinusoidal wave. Calculate both the carrier frequency f_c and the frequency of the tone frequency f_m. Express both frequencies in kilohertz (kHz).
Problem 7 Generating a WBFM Signal (30 points)

Design an Armstrong indirect FM modulator (generator) to generate an FM signal with carrier frequency $f_{c4} = 97.3000$ MHz and frequency deviation $\Delta f_4 = 10.240$ kHz. The block diagram of the indirect FM modulator is shown below.

A narrow-band FM generator at the left end of the block diagram generates a carrier frequency $f_{c1} = 20,000$ Hz and frequency deviation $\Delta f_1 = 5$ Hz. Only frequency doublers are available to build the two multipliers (of course, they can be cascaded together to obtain higher multiplication factors). Also, a local oscillator with adjustable frequency f_{lo} that is tunable between 400 kHz and 500 kHz. However, once the LO Δfrequency is determined, it is fixed in frequency. Find the multiplication values of M_1 and M_2 and find the local oscillator frequency f_{lo}.

These values are summarized in the table:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{c1}</td>
<td>20,000 Hz</td>
<td>f_{c4}</td>
</tr>
<tr>
<td>Δf_1</td>
<td>5 Hz</td>
<td>Δf_4</td>
</tr>
<tr>
<td>f_{lo}</td>
<td>400 kHz < f_{lo} < 500 kHz</td>
<td></td>
</tr>
</tbody>
</table>