Problem 1 FM and PM Relationship (10 points)

When we generate a “phase-modulated” signal modulated by the message signal \(m_p(t) \), we simultaneously produce a “frequency modulated” signal. Of course, the frequency modulated signal corresponds to a different modulated waveform where we represent the message signal by \(m_f(t) \). Write an equation stating the relationship between \(m_p(t) \) and \(m_f(t) \). [Hint: Equate the angles for both modulations.]

Solution:

For phase modulation the angle is
\[
\theta(t) = k_p m_p(t),
\]
and for frequency modulation we have
\[
\theta(t) = k_f \int_{-\infty}^{t} m_f(\lambda) d\lambda
\]
Equating both expressions gives
\[
m_p(t) = \frac{k_f}{k_p} \int_{-\infty}^{t} m_f(\lambda) d\lambda \quad \text{or} \quad m_f(t) = \frac{k_p}{k_f} \frac{dm_p(t)}{dt}
\]
(a) If frequency modulation is performed by the modulator with frequency deviation constant \(k_f = 4\pi \cdot 10^4 \); find the minimum and the maximum values of the instantaneous frequencies, specifically \(f_{i,\text{min}} \) and \(f_{i,\text{max}} \), respectively.

Solution:

\[
c(t) = 5 \cdot \cos(2\pi \times 10^7 t); \quad f_c = \frac{2\pi \cdot 10^7}{2\pi} = 10^7 \text{ Hz}
\]

\[
[m(t)]_{\text{max}} = 2; \quad [m(t)]_{\text{min}} = -2.
\]

\[
f_{i,\text{max}} = f_c + \frac{k_f}{2\pi} [m(t)]_{\text{max}} = 10^7 + \frac{4\pi \times 10^4}{2\pi} [2] = 10.04 \text{ MHz}
\]

\[
f_{i,\text{min}} = f_c + \frac{k_f}{2\pi} [m(t)]_{\text{min}} = 10^7 + \frac{4\pi \times 10^4}{2\pi} [-2] = 9.96 \text{ MHz}
\]

(b) Sketch the FM modulated waveform.
Problem 3 Frequency Deviation of an FM Signal (10 points)

Frequency modulation is performed with a tone message signal given by $m(t) = 2 \cdot \cos(\omega_m t)$, and a carrier given by $c(t) = 5 \cdot \cos(10 \omega_m t)$, where $\omega_m = 3\pi \cdot 10^4$ radians/sec.

(a) What is the maximum possible value of the frequency deviation constant k_f if the modulated signal is narrowband FM? (8 points)

Solution:

$$m(t) = 2 \cos \omega_m t ; \quad \omega_m = 3\pi \cdot 10^4 ; \quad \beta = \frac{\Delta \omega}{\omega_m} = \frac{A_m k_f}{\omega_m} = \frac{2k_f}{3\pi \cdot 10^4}$$

But NBFM implies that $\beta < 0.3$. Take $\beta = 0.3$ as the boundary value.
\[\because \quad \beta = \frac{2k_f}{3\pi \times 10^4} \leq 0.3 \quad \Rightarrow \quad k_f \leq 4.5\pi \times 10^3 \quad (=14,137.17) \]

(b) If \(k_f = 1.5\pi \times 10^3 \), obtain an expression for the spectrum of the narrowband FM signal and sketch its positive frequency amplitude spectrum. (7 points)

\[
\Phi_{FM}(\omega)
\]

Solution:

\[
k_f = 1.5\pi \times 10^3 \quad \beta = \frac{\Delta \omega}{\omega_m} = \frac{A_m k_f}{\omega_m} = \frac{2[1.5\pi \times 10^3]}{3\pi \times 10^4} = 0.1 < 0.3 \quad \Rightarrow \quad \text{NBFM}
\]

Employing Eq. (4.19) on page 169,

\[
\phi_{FM}(t) = A_c \cos(\omega_c t) + \frac{1}{2} \beta A_c \cos\left((\omega_c + \omega_m)t\right) \frac{1}{2} \beta A_c \cos\left((\omega_c - \omega_m)t\right)
\]

\[
5 \cos(\omega_c t) + 0.25 \cos\left((\omega_c + \omega_m)t\right) - 0.25 A_c \cos\left((\omega_c - \omega_m)t\right)
\]

\[
\Phi_{FM}(\omega) = 5\pi \left[\delta(\omega + \omega_c) + \delta(\omega - \omega_c) \right] + 0.25\pi \left[\delta(\omega + \omega_c + \omega_m) + \delta(\omega - \omega_c - \omega_m) \right] - 0.25\pi \left[\delta(\omega + \omega_c - \omega_m) + \delta(\omega - \omega_c + \omega_m) \right]
\]

The spectrum is like that of Figure 4.6, except for the differences in sideband frequencies and amplitudes.
Problem 4 FM Bandwidth (15 points)

Assume that the bandwidth of the message signal used in Problem 2 above is band-limited to the third harmonic of its fundamental frequency, and that the frequency modulation operation has a frequency deviation constant of \(k_f = \pi \cdot 10^5 \).

(a) Find the frequency deviation of the FM signal. (4 points)

Solution:
The bandwidth of \(m(t) \) going up to the third harmonic is

\[
B = 3 \frac{1}{T} = 3 \times \frac{1}{0.1\text{ms}} = 30 \text{ kHz}
\]

\[
\Delta f = \frac{1}{2\pi} \left[m_p k_f \right] = \frac{1}{2\pi} \left[2 \times 10^5 \pi \right] = 100 \text{ kHz}
\]

(b) Find the phase deviation constant such that if phase modulation is performed, the PM signal will have the same bandwidth as the FM signal. (4 points)

Solution:
For PM, \(\Delta f = 100 \text{ kHz} \), also since FM and PM bandwidths are equal. Using the graph in Problem 2 above we can determine the derivative of \(m(t) \),

\[
\frac{dm_p}{dt} = \frac{\Delta m(t)}{\Delta t} = \frac{2 - 0}{\left(0.05 \times 10^{-3} - 0 \right) \text{sec}} = 4 \times 10^4 \text{ s}^{-1}
\]
\[\Delta f = 100 \text{ kHz} = \frac{k_p \times \left(\frac{dm_p}{dt} \right)}{2\pi} = \frac{k_p \times 4 \times 10^4}{2\pi} \Rightarrow k_p = 5\pi \]

Note: The Solution Manual for Agbo & Sadiku is in error (it is not 2.5 \(\pi\); don’t blindly believe a solution manual, especially when a book is in its first edition).

(c) Find the bandwidth of the FM signal using Carson’s rule. (4 points)

Solution:
Using Carson’s rule:
\[B_{FM} = 2(\Delta f + B) = 2(100 \text{ kHz} + 30 \text{ kHz}) = 260 \text{ kHz} \]

(d) Find the bandwidth of the FM signal using the conservative rule given by equation (4.32) on page 180. (3 points)

Solution:
\[B_{FM} = 2(\Delta f + 2B) = 2(100 \text{ kHz} + 60 \text{ kHz}) = 320 \text{ kHz} \]

Problem 5 FM Waveform (15 points)

The figure below shows an FM carrier modulated by a single-tone sinusoidal wave. Calculate both the carrier frequency \(f_C \) and the frequency of the tone frequency \(f_m \). Express both frequencies in kilohertz (kHz).

Carrier frequency \(f_C = \) ________292.1____ kHZ

Tone frequency \(f_m = \) ________22.47____ kHZ

Approximately, it is hard to exactly read the values from the graph. Therefore, any an answer close to the above values is acceptable.
Answer:

For the tone frequency we identify one cycle of the FM signal frequency as being modulated at frequency f_m. This is shown below where thirteen cycles of the FM waveform occur before it repeats over and over (obviously it repeats at the reciprocal of the period T_m of the modulating frequency f_m. The red arrows show the points picked to determine the period T_m. To determine the time for one cycle of the carrier simply divide the time between the arrows by the number of cycles occurring.
Number of cycles $= 13$ and $T_m = 67.5 - 23 \mu\text{sec} = 44.5 \mu\text{sec}$

The time for one carrier cycle is $T_C = \frac{44.5 \mu\text{sec}}{13} = 3.423 \mu\text{sec}$

$$f_C = \frac{1}{T_C} = \frac{1}{3.423 \times 10^{-6} \text{ sec}} \approx 292,141 \text{ Hz} \approx 292.14 \text{ kHz}$$

The tone modulating frequency f_m is

$$f_m = \frac{1}{T_m} = \frac{1}{44.5 \times 10^{-6} \text{ sec}} \approx 22,472 \text{ Hz} \approx 22.47 \text{ kHz}$$

The carrier frequency is 13 times greater than the tone frequency and both frequencies you found must be consistent with that.

Problem 6 Generation of FM Signal With Multiplier (20 points)

The simple circuit shown below is a frequency multiplier.

The input FM signal is

$$\phi(t) = A_c \cdot \sin \left[2\pi \times 10^7 t + \sin \left(2\pi \times 10^4 t \right) \right]$$

The half-wave rectified output from the diode is represented by $x(t)$ and the output of the circuit is represented by $\phi_n(t)$.

8 Homework 7
We want \(\phi_n(t) \) to be a frequency multiplied signal where it is multiplied by integer \(n \) and \(\phi_n(t) \) has a carrier frequency equal to \(n f_C \). We do this by choosing inductor \(L \) and capacitor \(C \) having a series resonance equal to \(n f_C \). The frequency deviation for FM then sets the resistance value \(R \) in the circuit (we are ignoring the resistor at the cathode end of the diode).

Remember in a series resonant circuit has a resonance frequency \(f_{res} \) of

\[
f_{res} = \sqrt{\frac{1}{(2\pi)^2 LC}}.
\]

The half-power points of the resonance bell-shaped curve are the -3 dB points. Solving the equations for the \(LRC \) resonator gives the high and low frequencies corresponding to the half-power points as

\[
\omega_{H and L} = \pm \left(\frac{R}{2L} \right) + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} ,
\]

where subscript “\(H \)” stands for the half-power frequencies above \(f_{res} \) and “\(L \)” stands for the half-power frequency below \(f_{res} \). If you like to work with the circuit \(Q \) possess, then we have \(B = f_H - f_L \)

\[
Q = \frac{f_{res}}{f_H - f_L} = \frac{\omega_{res}}{\omega_H - \omega_L} ; \quad Q = \frac{\omega_{res}L}{R} = \frac{1}{\omega_{res}CR} = \frac{1}{R \sqrt{C}} .
\]

Complete the design of this multiplier circuit by choosing the values of \(R \) and \(C \), given that \(L = 5 \) \(\mu \)H (microhenries), so that a multiplication factor \(n = 4 \), and the -3 dB frequencies of the series resonant circuit are one frequency deviation of the output FM signal above and below \(f_{res} \).

https://www.electronics-tutorials.ws/accircuits/series-resonance.html

Solution: (This is Problem 4.15 in the textbook Agbo & Sadiku)

In FM the message signal is found from the relationship,

\[
\phi(t) = A_c \sin \left[2\pi \times 10^7 t + \sin \left(2\pi \times 10^4 t \right) \right] \Rightarrow \sin \left(2\pi \times 10^4 t \right) = k_f \int_0^t m(\lambda) \, d\lambda
\]

\[
\therefore \frac{d}{dt} \left[\sin \left(2\pi \times 10^4 t \right) \right] = 2\pi \times 10^4 \cos \left(2\pi \times 10^4 t \right) = k_f m(t) = k_f A_m \cos \omega_m t
\]
\[\Delta \omega = 2\pi \Delta f = k_f A_m = 2\pi \times 10^4 \text{ rad/sec}; \quad \omega_c = 2\pi \times 10^7 \text{ rad/sec} \]

After multiplication by factor \(n = 4 \), the desired filter series resonant frequency and -3 dB frequencies are

\[\omega_{res} = 4\omega_c = 8\pi \times 10^7 \]

\[\omega_L = \omega_0 - 4\Delta \omega = 7.92\pi \times 10^7 \text{ rad/sec}; \]

\[\omega_H = \omega_0 + 4\Delta \omega = 8.08\pi \times 10^7 \text{ rad/sec} \]

\[\omega_{res} = 8\pi \times 10^7 = \frac{1}{\sqrt{LC}} \quad \Rightarrow \quad C = \frac{1}{\left(8\pi \times 10^7\right)^2 \times 5 \times 10^{-6}} = 3.17 \text{ pF} \]

or \(C = 3.17 \times 10^{-12} \text{ F} \)

It is not 0.317 nF as many students found because of the wrong value of \(f_c \) (and the Agbo & Sadiku Solution Manual is in error for anyone that might have access to it). The bandwidth \(B \) is

\[B = \omega_H - \omega_L = 16\pi \times 10^4 = \frac{R}{L} \]

\[\therefore \quad R = L\left(16\pi \times 10^4\right) = 5 \times 10^{-6} \left(16\pi \times 10^4\right) = 2.51 \Omega \]

Problem 7 Differentiator Demodulator (10 points)

The circuit shown below is a good approximation to an ideal differentiator demodulator if \(f_c < 0.1 f_H \), where \(f_c \) is the carrier frequency of the FM signal and \(f_H \) is the cut-off frequency of the RC high-pass filter. The input FM signal is given by

\[\phi_{FM}(t) = 4 \cdot \cos\left[\pi \times 10^8 t + \pi \times 10^4 \left(5 \cdot \sin(\pi \times 10^4 t)\right)\right] \]

Specify the value of the resistance \(R \) such that \(f_c = 0.1 f_H \) if \(C = 5 \text{ pF} \).
Solution:
\[\phi_{FM}(t) = 4 \cos \left(10^8 \pi t + 10^4 \pi 5 \sin 10^4 \pi t \right) \Rightarrow \omega_c = 10^8 \pi; \ f_c = 50 \text{ MHz}. \]

The high-pass filter cut-off frequency is
\[f_H = 10 f_c = 5 \times 10^8 \text{ Hz}. \]

\[\omega_H = \frac{1}{RC} = 2 \pi f_H = 10^9 \pi \text{ rad/sec} \]

\[R = \frac{1}{\omega_H C} = \frac{1}{10^9 \pi \times 5 \times 10^{-12}} = 63.7 \ \Omega \]