Abstract: Given any triangle, two cevians from distinct vertices will partition the triangle into four convex polygons. We prove a necessary and sufficient condition for two of these polygons to have equal area. The well known median concurrence and median partitioning theorems are shown as corollaries. Further, we prove the Inscribed Rhombus Theorem as a special case of the Two Cevian Theorem, stating the necessary and sufficient conditions over all triangles. Finally, it is shown that the Pythagorean Theorem is a special case of the Inscribed Rhombus Theorem. In particular, a proof of the Pythagorean Theorem is given that has striking similarities to the proof given by Euclid in the Book of Elements.

STUDENTS ARE ESPECIALLY ENCOURAGED TO COME!