Chapters 7
Structured Programming

Embedded Systems with ARM Cortex-M

Updated: Sunday, March 4, 2018
Three basic control structures

Sequence Structure

Selection Structure

Loop Structure

"Nothing is particularly hard if you divide it into small jobs."
Henry Ford, Founder of Ford Motor
Example: Factorial of a non-negative number

• $N! = 1 \times 2 \times 3 \times \ldots \times (n-2) \times (n-1) \times n$
• Draw the flowchart!
Example: Factorial of a non-negative number

- $N! = 1 \times 2 \times 3 \ldots (n-2)(n-1)(n)$
- Draw the flowchart!
Find The Maximum Value and Its Location In the Given Array

- Assume:
 - Linear search
 - Given an array[] – contains signed numbers
 - R3 = Array_Size
 - R0 = Max_Value
 - R2 = Counter
 - R1 = Array_Index
 - Each number in the array is a word size

- Array: DCD 1,2,3,-1, ...
- Size: DCD 4
Find The Maximum Value and Its Location In the Given Array

Array size
Array R0 = Default max
Array R1 = max location
Update the index
R5 = R4 + R2 * 4
Update COUNT (Size)
Find out the Parity bit value and the number of 1’s in a given value n

- ODD Parity: 1 if event number of ones
- EVEN Parity: 1 if odd number of ones
- The basic Algorithms:

 While (n > 0)
 {
 Find n-1
 Calculate n = n & n-1
 Flip parity bit
 Count ++
 }
Convert String to an Integer

• ASCII values for numbers 0-9 are 0x30-0x39. Thus, we need to subtract 0x30 from a given ASCII to convert it into a number

• Assume out STR is given as 123456