DATA SHEET

NE567/SE567
Tone decoder/phase-locked loop

Product data
Supersedes data of 1992 Apr 15

2002 Sep 25
DESCRIPTION
The NE567/SE567 tone and frequency decoder is a highly stable phase-locked loop with synchronous AM lock detection and power output circuitry. Its primary function is to drive a load whenever a sustained frequency within its detection band is present at the self-biased input. The bandwidth center frequency and output delay are independently determined by means of four external components.

PIN CONFIGURATION

```
D, N Packages

1 2 3 4 5 6 7 8
OUT PUT FILTER
CAPACITOR C3
LOW-PASS FILTER
CAPACITOR C2
INPUT
SUPPLY VOLTAGE V+
GRO UN D
TIMING ELEMENTS
R1 AND C1
TIMING ELEMENT R1
```

Figure 1. Pin configuration

FEATURES
- Wide frequency range (0.01 Hz to 500 kHz)
- High stability of center frequency
- Independently controllable bandwidth (up to 14%)
- High out-band signal and noise rejection
- Logic-compatible output with 100 mA current sinking capability
- Inherent immunity to false signals
- Frequency adjustment over a 20-to-1 range with an external resistor

APPLICATIONS
- Touch-Tone® decoding
- Carrier current remote controls
- Ultrasonic controls (remote TV, etc.)
- Communications paging
- Frequency monitoring and control
- Wireless intercom
- Precision oscillator

BLOCK DIAGRAM

Figure 2. Block Diagram

©Touch-Tone is a registered trademark of AT&T.
Figure 3. Equivalent schematic
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDER CODE</th>
<th>DESCRIPTION</th>
<th>TEMPERATURE RANGE</th>
<th>DWG #</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE567D</td>
<td>SO8: plastic small outline package; 8 leads; body width 3.9 mm</td>
<td>0 °C to +70 °C</td>
<td>SOT96-1</td>
</tr>
<tr>
<td>NE567N</td>
<td>DIP8: plastic dual in-line package; 8 leads (300 mil)</td>
<td>0 °C to +70 °C</td>
<td>SOT97-1</td>
</tr>
<tr>
<td>SE567D</td>
<td>SO8: plastic small outline package; 8 leads; body width 3.9 mm</td>
<td>–55 °C to +125 °C</td>
<td>SOT96-1</td>
</tr>
<tr>
<td>SE567N</td>
<td>DIP8: plastic dual in-line package; 8 leads (300 mil)</td>
<td>–55 °C to +125 °C</td>
<td>SOT97-1</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{amb}NE567</td>
<td>Operating temperature</td>
<td>0 to +70 °C</td>
<td>°C</td>
</tr>
<tr>
<td>T_{amb}SE567</td>
<td>NE567</td>
<td>–55 to +125 °C</td>
<td>°C</td>
</tr>
<tr>
<td>VCC</td>
<td>Operating voltage</td>
<td>10 VDC</td>
<td>V</td>
</tr>
<tr>
<td>V+</td>
<td>Positive voltage at input</td>
<td>0.5 +V_S</td>
<td>V</td>
</tr>
<tr>
<td>V–</td>
<td>Negative voltage at input</td>
<td>–10 VDC</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output voltage (collector of output transistor)</td>
<td>15 VDC</td>
<td>V</td>
</tr>
<tr>
<td>T_{slg}</td>
<td>Storage temperature range</td>
<td>–65 to +150 °C</td>
<td>°C</td>
</tr>
<tr>
<td>PD</td>
<td>Power dissipation</td>
<td>300 mW</td>
<td>mW</td>
</tr>
</tbody>
</table>
DC ELECTRICAL CHARACTERISTICS

V+ = 5.0 V, T_{amb} = 25 °C, unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SE567</th>
<th>NE567</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f<sub>O</sub></td>
<td>Highest center frequency</td>
<td></td>
<td>500</td>
<td>500</td>
<td>kHz</td>
</tr>
<tr>
<td>f<sub>O</sub></td>
<td>Center frequency stability<sup>2</sup></td>
<td>–55 °C to +125 °C</td>
<td>35 ±140</td>
<td>35 ±140</td>
<td>ppm/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 °C to +70 °C</td>
<td>35 ±60</td>
<td>35 ±60</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>f<sub>O</sub></td>
<td>Center frequency distribution</td>
<td>f<sub>O</sub> = 100kHz = 1.1R<sub>1</sub>C<sub>1</sub></td>
<td>–10</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>f<sub>O</sub></td>
<td>Center frequency shift with supply voltage</td>
<td>f<sub>O</sub> = 100kHz = 1.1R<sub>1</sub>C<sub>1</sub></td>
<td>0.5</td>
<td>1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Detection bandwidth

<table>
<thead>
<tr>
<th>BW</th>
<th>Largest detection bandwidth</th>
<th>f<sub>O</sub> = 100kHz = 1.1R<sub>1</sub>C<sub>1</sub></th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>10</th>
<th>14</th>
<th>18</th>
<th>% of f<sub>O</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
<td>Largest detection bandwidth skew</td>
<td></td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>% of f<sub>O</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>Largest detection bandwidth—variation with temperature</td>
<td>V<sub>I</sub> = 300 mV<sub>RMS</sub></td>
<td>±0.1</td>
<td>±0.1</td>
<td>%/<degree></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>Largest detection bandwidth—variation with supply voltage</td>
<td>V<sub>I</sub> = 300 mV<sub>RMS</sub></td>
<td>±2</td>
<td>±2</td>
<td>%/<V></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input

R_{IN}	Input resistance	15	20	25	15	20	25	kΩ
V_I	Smallest detectable input voltage⁴	10	15	10	15	mV_{RMS}		
	Largest no-output input voltage⁴	10	15	10	15	mV_{RMS}		
	Greatest simultaneous out-band signal-to-in-band signal ratio	+6	+6	dB				
	Minimum input signal to wide-band noise ratio	B_n = 140 kHz	–6	–6	dB			

Output

f_O/20	Fastest on-off cycling rate	f_O/20	f_O/20	ns		
V_S = 15 V	“1” output leakage current	0.01	25	0.01	25	µA
I_F	“0” output voltage	0.2	0.4	0.2	0.4	V
	I_L = 30 mA	0.6	1.0	0.6	1.0	V
	I_L = 100 mA	30	30	ns		
	R_L = 50 Ω	150	150	ns		

General

V_{CC}	Operating voltage range	4.75	9.0	4.75	9.0	V
Supply current quiescent	6	8	7	10	mA	
Supply current—activated	R_L = 20 kΩ	11	13	12	15	mA
I_{PD}	Quiescent power dissipation	30	35	mW		

NOTES:

1. Frequency determining resistor R₁ should be between 2 and 20 kΩ.
2. Applicable over 4.75 V to 5.75 V. See graphs for more detailed information.
3. Pin 8 to Pin 1 feedback R_L network selected to eliminate pulsing during turn-on and turn-off.
4. With R₂ = 130 kΩ from Pin 1 to V+. See Figure 16.
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Bandwidth vs. input signal amplitude

Figure 5. Largest detection bandwidth vs. operating frequency

Figure 6. Detection bandwidth as a function of C₂ and C₃

Figure 7. Typical supply current vs. supply voltage

Figure 8. Greatest number of cycles before output

Figure 9. Typical output voltage vs. temperature
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 10. Typical frequency drift with temperature (Mean and SD)

Figure 11. Typical frequency drift with temperature (Mean and SD)

Figure 12. Typical frequency drift with temperature (Mean and SD)

Figure 13. Center frequency temperature coefficient (Mean and SD)

Figure 14. Center frequency shift with supply voltage change vs. operating frequency

Figure 15. Typical bandwidth variation temperature
DESIGN FORMULAS

\[f_O = \frac{1}{1.1 R_1 C_1} \]

\[BW \approx 1070 \sqrt{\frac{V_{I}}{f_O C_2}} \text{ in } \% \text{ of } f_O \]

\[V_I \leq 200\text{mV RMS} \]

Where

\[V_I = \text{Input voltage (VRMS)} \]
\[C_2 = \text{Low-pass filter capacitor (μF)} \]

PHASE-LOCKED LOOP TERMINOLOGY

CENTER FREQUENCY (f_O)
The free-running frequency of the current controlled oscillator (CCO) in the absence of an input signal.

Detection bandwidth (BW)
The frequency range, centered about f_O, within which an input signal above the threshold voltage (typically 20 mV RMS) will cause a logical zero state on the output. The detection bandwidth corresponds to the loop capture range.

Lock range
The largest frequency range within which an input signal above the threshold voltage will hold a logical zero state on the output.

Detection band skew
A measure of how well the detection band is centered about the center frequency, f_O. The skew is defined as:

\[\frac{f_{MAX} + f_{MIN} - 2f_O}{2f_O} \]

where \(f_{MAX} \) and \(f_{MIN} \) are the frequencies corresponding to the edges of the detection band. The skew can be reduced to zero if necessary by means of an optional centering adjustment.

OPERATING INSTRUCTIONS

Figure 16 shows a typical connection diagram for the 567. For most applications, the following three-step procedure will be sufficient for choosing the external components R_1, C_1, C_2 and C_3.

1. Select R_1 and C_1 for the desired center frequency. For best temperature stability, R_1 should be between 2 kΩ and 20 kΩ, and the combined temperature coefficient of the R_1C_1 product should have sufficient stability over the projected temperature range to meet the necessary requirements.

2. Select the low-pass capacitor, C_2, by referring to Figure 4, ‘Bandwidth vs. input signal amplitude’. If the input amplitude variation is known, the appropriate value of f_O · C_2 necessary to give the desired bandwidth may be found. Conversely, an area of operation may be selected on this graph and the input level and C_2 may be adjusted accordingly. For example, constant bandwidth operation requires that input amplitude be above 200mV RMS. The bandwidth, as noted on the graph, is then controlled solely by the f_O · C_2 product (f_O (Hz), C_2(μF)).

3. The value of C_3 is generally non-critical. C_3 sets the band edge of a low-pass filter which attenuates frequencies outside the detection band to eliminate spurious outputs. If C_3 is too small, frequencies just outside the detection band will switch the output stage on and off at the beat frequency, or the output may pulse on and off during the turn-on transient. If C_3 is too large, turn-on and turn-off of the output stage will be delayed until the voltage on C_3 passes the threshold voltage. (Such delay may be desirable to avoid spurious outputs due to transient frequencies.) A typical minimum value for C_3 is 2C_2.

4. Optional resistor R_2 sets the threshold for the largest “no output” input voltage. A value of 130 kΩ is used to assure the tested limit of 10 mV RMS min. This resistor can be referenced to ground for increased sensitivity. The explanation can be found in the “optional controls” section which follows.

TYPICAL RESPONSE

Response to 100mV RMS Tone Burst

Response to Same Input Tone Burst With Wideband Noise
AVAILABLE OUTPUTS (Figure 18)
The primary output is the uncommitted output transistor collector, Pin 8. When an in-band input signal is present, this transistor saturates; its collector voltage being less than 1.0 volt (typically 0.6V) at full output current (100mA). The voltage at Pin 2 is the phase detector output which is a linear function of frequency over the range of 0.95 to 1.05 f_o with a slope of about 20mV per percent of frequency deviation. The average voltage at Pin 1 is, during lock, a function of the in-band input amplitude in accordance with the transfer characteristic given. Pin 5 is the controlled oscillator square wave output of magnitude (+V–2VBE)≅(+V–1.4V) having a DC average of +V/2. A 1kΩ load may be driven from pin 5. Pin 6 is an exponential triangle of 1V_p-p with an average DC level of +V/2. Only high impedance loads may be connected to pin 6 without affecting the CCO duty cycle or temperature stability.

OPERATING PRECAUTIONS
A brief review of the following precautions will help the user achieve the high level of performance of which the 567 is capable.

1. Operation in the high input level mode (above 200 mV) will free the user from bandwidth variations due to changes in the in-band signal amplitude. The input stage is now limiting, however, so that out-band signals or high noise levels can cause an apparent bandwidth reduction as the inband signal is suppressed. Also, the limiting action will create in-band components from sub-harmonic signals, so the 567 becomes sensitive to signals at f_o/3, f_o/5, etc.

2. The 567 will lock onto signals near (2n+1) f_o, and will give an output for signals near (4n+1) f_o where n = 0, 1, 2, etc. Thus, signals at 5f_o and 9f_o can cause an unwanted output. If such signals are anticipated, they should be attenuated before reaching the 567 input.

3. Maximum immunity from noise and out-band signals is afforded in the low input level (below 200 mVRMS) and reduced bandwidth operating mode. However, decreased loop damping causes the worst-case lock-up time to increase, as shown by the Greatest Number of Cycles Before Output vs Bandwidth graph.

4. Due to the high switching speeds (20 ns) associated with 567 operation, care should be taken in lead routing. Lead lengths should be kept to a minimum. The power supply should be adequately bypassed close to the 567 with a 0.01µF or greater capacitor; grounding paths should be carefully chosen to avoid ground loops and unwanted voltage variations. Another factor which must be considered is the effect of load energization on the power supply. For example, an incandescent lamp typically draws 10 times rated current at turn-on. This can cause supply voltage fluctuations which could, for example, shift the detection band of narrow-band systems sufficiently to cause momentary loss of lock. The result is a low-frequency oscillation into and out of lock. Such effects can be prevented by supplying heavy load currents from a separate supply or increasing the supply filter capacitor.

Figure 18. Available outputs
SPEED OF OPERATION
Minimum lock-up time is related to the natural frequency of the loop. The lower it is, the longer becomes the turn-on transient. Thus, maximum operating speed is obtained when C_2 is at a minimum. When the signal is first applied, the phase may be such as to initially drive the controlled oscillator away from the incoming frequency rather than toward it. Under this condition, which is of course unpredictable, the lock-up transient is at its worst and the theoretical minimum lock-up time is not achievable. We must simply wait for the transient to die out.

The following expressions give the values of C_2 and C_3 which allow highest operating speeds for various band center frequencies. The minimum rate at which digital information may be detected without information loss due to the turn-on transient or output chatter is about 10 cycles per bit, corresponding to an information transfer rate of $f_{O}/10$ baud.

$$C_2 = \frac{130}{f_{O}} \mu F$$

$$C_3 = \frac{260}{f_{O}} \mu F$$

In cases where turn-off time can be sacrificed to achieve fast turn-on, the optional sensitivity adjustment circuit can be used to move the quiescent C_3 voltage lower (closer to the threshold voltage). However, sensitivity to beat frequencies, noise and extraneous signals will be increased.

OPTIONAL CONTROLS (Figure 19)
The 567 has been designed so that, for most applications, no external adjustments are required. Certain applications, however, will be greatly facilitated if full advantage is taken of the added control possibilities available through the use of additional external components. In the diagrams given, typical values are suggested where applicable. For best results the resistors used, except where noted, should have the same temperature coefficient. Ideally, silicon diodes would be low-resistivity types, such as forward-biased transistor base-emitter junctions. However, ordinary low-voltage diodes should be adequate for most applications.

SENSITIVITY ADJUSTMENT (Figure 19)
When operated as a very narrow-band detector (less than 8%), both C_2 and C_3 are made quite large in order to improve noise and out-band signal rejection. This will inevitably slow the response time. If, however, the output stage is biased closer to the threshold level, the turn-on time can be improved. This is accomplished by drawing additional current to terminal 1. Under this condition, the 567 will also give an output for lower-level signals (10 mV or lower).

By adding current to terminal 1, the output stage is biased further away from the threshold voltage. This is most useful when, to obtain maximum operating speed, C_2 and C_3 are made very small. Normally, frequencies just outside the detection band could cause false outputs under this condition. By desensitizing the output stage, the out-band beat notes do not feed through to the output stage. Since the input level must be somewhat greater when the output stage is made less sensitive, rejection of third harmonics or in-band harmonics (of lower frequency signals) is also improved.
CHATTER PREVENTION (Figure 20)
Chatter occurs in the output stage when C3 is relatively small, so that the lock transient and the AC components at the quadrature phase detector (lock detector) output cause the output stage to move through its threshold more than once. Many loads, for example lamps and relays, will not respond to the chatter. However, logic may recognize the chatter as a series of outputs. By feeding the output stage output back to its input (Pin 1) the chatter can be eliminated. Three schemes for doing this are given in Figure 20. All operate by feeding the first output step (either on or off) back to the input, pushing the input past the threshold until the transient conditions are over. It is only necessary to assure that the feedback time constant is not so large as to prevent operation at the highest anticipated speed. Although chatter can always be eliminated by making C3 large, the feedback circuit will enable faster operation of the 567 by allowing C3 to be kept small. Note that if the feedback time constant is made quite large, a short burst at the input frequency can be stretched into a long output pulse. This may be useful to drive, for example, stepping relays.

DETECTION BAND CENTERING (OR SKEW) ADJUSTMENT (Figure 21)
When it is desired to alter the location of the detection band (corresponding to the loop capture range) within the lock range, the circuits shown above can be used. By moving the detection band to one edge of the range, for example, input signal variations will expand the detection band in only one direction. This may prove useful when a strong but undesirable signal is expected on one side or the other of the center frequency. Since RB also alters the duty cycle slightly, this method may be used to obtain a precise duty cycle when the 567 is used as an oscillator.
ALTERNATE METHOD OF BANDWIDTH REDUCTION (Figure 22)

Although a large value of C2 will reduce the bandwidth, it also reduces the loop damping so as to slow the circuit response time. This may be undesirable. Bandwidth can be reduced by reducing the loop gain. This scheme will improve damping and permit faster operation under narrow-band conditions. Note that the reduced impedance level at terminal 2 will require that a larger value of C2 be used for a given filter cutoff frequency. If more than three 567s are to be used, the network of RB and RC can be eliminated and the RA resistors connected together. A capacitor between this junction and ground may be required to shunt high frequency components.

NOTE:

\[
\frac{130}{I_0} \left(\frac{10k + R}{R} \right) < C_2 < \frac{1300}{I_0} \left(\frac{10k + R}{R} \right)
\]

Adjust control for symmetry of detection band edges about f0.

Figure 22. BW reduction

OUTPUT LATCHING (Figure 23)

To latch the output on after a signal is received, it is necessary to provide a feedback resistor around the output stage (between Pins 8 and 1). Pin 1 is pulled-up to unlatch the output stage.

REDUCTION OF C1 VALUE

For precision very low-frequency applications, where the value of C1 becomes large, an overall cost savings may be achieved by inserting a voltage-follower between the R1 C1 junction and Pin 6, so as to allow a higher value of R1 and a lower value of C1 for a given frequency.

PROGRAMMING

To change the center frequency, the value of R1 can be changed with a mechanical or solid state switch, or additional C1 capacitors may be added by grounding them through saturating NPN transistors.
TYPICAL APPLICATIONS

NOTES:
Component values (Typical)
R₁ = 26.8 to 15kΩ
R₂ = 24.7kΩ
R₃ = 20kΩ
C₁ = 0.10mF
C₂ = 1.0mF 5V
C₃ = 2.2mF 6V
C₄ = 250µF 6V

Figure 24. Typical applications
TYPICAL APPLICATIONS (continued)

NOTES:
1. Resistor and capacitor values chosen for desired frequencies and bandwidth.
2. If C3 is made large so as to delay turn-on of the top 567, decoding of sequential (f1, f2) tones is possible.

NOTES:
R2 = R1/5
Adjust R1 so that $\phi = 90^\circ$ with control midway.

Figure 25. Typical applications (cont.)
TYPICAL APPLICATIONS (continued)

Oscillator With Quadrature Output

Oscillator With Double Frequency Output

Precision Oscillator With 20ns Switching

Pulse Generator With 25% Duty Cycle

Precision Oscillator to Switch 100mA Loads

Pulse Generator

Figure 26. Typical applications (cont.)
SO8: plastic small outline package; 8 leads; body width 3.9 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>bP</th>
<th>c</th>
<th>D(1)</th>
<th>E(2)</th>
<th>e</th>
<th>H_E</th>
<th>L</th>
<th>L_P</th>
<th>Q</th>
<th>v</th>
<th>w</th>
<th>y</th>
<th>Z(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1.75</td>
<td>0.25</td>
<td>1.45</td>
<td>0.25</td>
<td>0.25</td>
<td>5.0</td>
<td>4.0</td>
<td>3.8</td>
<td>1.27</td>
<td>6.2</td>
<td>5.8</td>
<td>1.05</td>
<td>1.0</td>
<td>0.7</td>
<td>0.25</td>
<td>0.25</td>
<td>0.7</td>
</tr>
<tr>
<td>inches</td>
<td>0.069</td>
<td>0.010</td>
<td>0.004</td>
<td>0.057</td>
<td>0.049</td>
<td>0.01</td>
<td>0.019</td>
<td>0.014</td>
<td>0.020</td>
<td>0.19</td>
<td>0.16</td>
<td>0.050</td>
<td>0.244</td>
<td>0.228</td>
<td>0.039</td>
<td>0.016</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
Tone decoder/phase-locked loop

DIP8: plastic dual in-line package; 8 leads (300 mil)

SOT97-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A1 min.</th>
<th>A2 max.</th>
<th>b</th>
<th>b1</th>
<th>b2</th>
<th>c</th>
<th>D (1)</th>
<th>E (1)</th>
<th>e</th>
<th>e1</th>
<th>L</th>
<th>M_E</th>
<th>M_H</th>
<th>w</th>
<th>Z (1) max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>4.2</td>
<td>0.51</td>
<td>3.2</td>
<td>1.73</td>
<td>0.53</td>
<td>1.07</td>
<td>0.36</td>
<td>9.8</td>
<td>6.48</td>
<td>2.54</td>
<td>7.62</td>
<td>3.60</td>
<td>8.25</td>
<td>10.0</td>
<td>0.254</td>
<td>1.15</td>
</tr>
<tr>
<td>inches</td>
<td>0.17</td>
<td>0.020</td>
<td>0.13</td>
<td>0.088</td>
<td>0.021</td>
<td>0.042</td>
<td>0.014</td>
<td>0.39</td>
<td>0.26</td>
<td>0.10</td>
<td>0.30</td>
<td>0.14</td>
<td>0.32</td>
<td>0.39</td>
<td>0.01</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

<table>
<thead>
<tr>
<th>OUTLINE VERSION</th>
<th>REFERENCES</th>
<th>EUROPEAN PROJECTION</th>
<th>ISSUE DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT97-1</td>
<td>IEC 0503G01</td>
<td>JEDEC MO-001</td>
<td>EIAJ SC-504-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>98-02-04</td>
</tr>
</tbody>
</table>
Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit
http://www.semiconductors.philips.com
Fax: +31 40 27 24825
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.