9.1 Overview

You will design a common-base amplifier in matlab, simulate it in Cadence, build the circuit, and measure the voltage gain of the amplifier.

9.2 Matlab Calculation

1. The specifications for the common-base amplifier are shown below
 - $R_S=50 \, \Omega$ (R_S is the internal resistance of the function generator.)
 - $R_{in}=50 \, \Omega$ (R_{in} is the resistance into the emitter of the BJT.)
 - $A_V=10$
 - $I_1 = 40I_B$
 - $V_{CC} = 9V$
 - $V_{in,m} = 50 \, mV$
 - $f = 100 \, KHz$
2. Assume the 2N3904 transistor to have a $\beta = 150$ and an I_S of 6.734 fA.

3. Determine g_m.

$$g_m = \frac{1}{R_{in}} \quad (9.1)$$

4. Determine I_C from the g_m specification.

$$g_m = \frac{I_C}{V_T} \quad (9.2)$$

5. Determine R_E. Assume that $R_E = 10R_{in}$.

6. Determine R_C. ($A_V = V_{out}/V_{in}$)

$$A_v = g_m R_C \quad (9.3)$$

7. Calculate V_{BE}.

$$V_{BE} = V_T \ln\left(\frac{I_C}{I_S}\right) \quad (9.4)$$

8. Calculate the voltage at V_B.

$$V_B = V_{BE} + I_C R_E \quad (9.5)$$

9. Determine I_B from β and I_C.

10. Determine I_1 given I_B.
11. Determine $R_1 + R_2$ from V_{CC} and I_1. (I_B is ignored!)

$$I_1 = \frac{V_{CC}}{R_1 + R_2} \quad (9.6)$$

12. Determine R_2 from V_B.

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} \quad (9.7)$$

13. Determine R_1 from $R_1 + R_2$ and R_2.

14. Design the value of C_1 so that the impedance of the capacitor is 15 times less than R_{in}.

$$|\frac{1}{\omega C_1}| = \frac{1}{15g_m} \quad (9.8)$$

15. Design the value of C_b so that the impedance of the capacitor is 20 times less than R_{in}.

$$|\frac{1}{\omega C_b(\beta + 1)}| = \frac{1}{20g_m} \quad (9.9)$$

16. Calculate the gain of the amplifier from V_{in} to V_{out}.

$$A_V = \frac{R_C}{\frac{1}{g_m}||R_E} \quad (9.10)$$

17. Simulate the circuit in Cadence.

18. Submission checklist

- A table summarizing calculated and simulated values of I_C, V_{BE}, V_B, I_B, I_1, V_{Re}, V_{ReC} and A_V.
- Simulated V_{in} and V_{out}.

9.3 Implementation

1. Build the circuit in the lab.

2. Measure the current in the R_C by dividing V_{Re} by R_C.

3. Measure the DC voltage at the base of the transistor.

4. Measure V_{Re}

5. Measure the amplitude of V_{in} and V_{out} on the oscilloscope.
9.4 Submission checklist

- A table summarizing simulated and measured values of I_C, V_{BE}, V_B, I_B, I_1, V_{RE}, and A_V. (10 points)
- Measured plot of V_{in} and V_{out}. (10 points)

9.5 Extra Credit

1. The amplifier that we designed suffers from effects of distortion. The distortion stems from the fact the R_C is used to establish both the collector voltage and the gain of the amplifier. How would you decouple the requirement of the collector voltage from the gain of the amplifier with a capacitor?