NEARLY NEIGHBORS

Archaeological Investigations for the High Street Seismic Retrofit Project in Oakland, California

Prepared for the California Department of Transportation

ASC
ANTHROPOLOGICAL STUDIES CENTER
SONOMA STATE UNIVERSITY
NEARLY NEIGHBORS: ARCHAEOLOGICAL INVESTIGATIONS
FOR THE HIGH STREET SEISMIC RETROFIT PROJECT
IN OAKLAND, CALIFORNIA

04-ALA-880, PM 27.4-28.0; EA 04-165424

Prepared for
District 4
Office of Cultural Resource Studies
California Department of Transportation
Oakland, California

Prepared by:
Mark Walker, Thad M. Van Bueren,
Dana Ogo Shew, Michael D. Meyer,
Adrian Praetzellis, and Mary Praetzellis
Anthropological Studies Center,
Sonoma State University,
Rohnert Park, California

January 2012
EXECUTIVE SUMMARY

This report presents the results of archaeological excavations carried out in 2008 and 2010 by the Anthropological Studies Center at Sonoma State University and Caltrans archaeologists, in connection with Caltrans' High Street Overhead Seismic Retrofit Project, in Oakland, California.

The report analyses and interprets the content of several archaeological features with deposition dates ranging from 1893 to 1943. These materials are associated with three Euroamerican and Japanese/Japanese-American households: the Pryde family (4411 Clement), the Stephenson family (4425 Clement), and the Orimoto family (4501 Clement). The report includes a wealth of archaeological, artifactual, archival, and oral interview data that relate to these three addresses. Each of the report’s primary authors approaches the data from a different perspective to address the project’s research questions about consumer behavior, ethnicity and identity, and the household developmental cycle. The collection is permanently curated at the David A. Fredrickson Archaeological Collections Facility, Sonoma State University.
ACKNOWLEDGMENTS

The High Street archaeological project has been in the works for nearly a decade. Many individuals participated in the project and their talents are reflected in the final product you see before you. We thank them all.

For the most recent endeavor, we thank ASC employees Erica Gibson, Sandra Massey, Robert Douglass, Maria Ribeiro, Bryan Much, Mike Konzak, Karen Reichardt, Mike Stoyka, Jessica Tudor, and Pat Paramoure for their help.

Caltrans archaeologists Benjamin Harris and Todd Jaffke provided invaluable assistance throughout the project.

We deeply appreciate the warm welcome we received from the local Japanese-American community. Ruth Shiraki, Jean and John Gize, Ann and Jim Farwell shared oral histories and family photographs. Ned Isokawa also shared family photographs that can be found throughout this report. Sachiko Kanenobu translated Japanese characters on artifacts.
CONTENTS

Executive Summary .. iii
Acknowledgments .. iv

CHAPTER 1: INTRODUCTION ... 1
The High Street Seismic Retrofit Project .. 1
The High Street Archaeology Project .. 1
 Legislative Context .. 1
Report Organization .. 1
Archaeological Project Description .. 5
 Consolidated Approach .. 5
 Preliminary Studies .. 5
 Sensitivity Studies ... 5
 Survey Reports .. 6
Fieldwork .. 6
Investigation Methods ... 7
 Historical Research ... 7
Field Methods ... 8
Laboratory Methods .. 9
 Processing Procedures .. 9
 Functional Categories ... 10
 Minimum Number of Items (MNI) .. 10
 Dating Methods .. 12
 Artifact Tables .. 13
Food Refuse Analysis: Faunal Remains .. 13
 Discard Policy ... 14
Curation .. 14

CHAPTER 2: NEIGHBORHOOD OVERVIEW .. 15
Natural Setting ... 15
Spanish and Mexican Period ... 15
American Period ... 16
The New Century ... 16
History of the Japanese in California and the Bay Area by Dana Ogo Shew 27
 The Japanese Nursery Industry in the Bay Area .. 28

CHAPTER 3: RESEARCH DESIGN .. 33
Formation Processes & Integrity ... 33
Theoretical Orientation ... 34
Research Themes .. 35
 Theme A: Consumer Behavior/Strategies .. 35
 Theme B: Ethnicity/Urban Subcultures .. 37
 Theme C: Household Developmental Cycles by Thad Van Beuren 39
The Stephenson Household and Its Transitions by Thad Van Bueren .. 181
Household Changes in Context.. 181
Architectural Transformations.. 184
Recognizing Events in the Archaeological Record .. 187
Perspectives on Household Dynamics .. 190
Conservative Trends... 191
Transitional Events ... 195

The Orimotos: The Material Culture of Dual Identity by Dana Ogo Shew 198
Oakland and Amache ... 200

Nearly Neighbors... 203

REFERENCES CITED ... 205

APPENDIX
Personnel List 2010–2011
LIST OF FIGURES

1.1. Project Vicinity .. 2
1.2. Project Limits and Archaeologically Sensitive Area .. 3
1.3. Archaeologically Sensitive Area with Historic Lot Lines .. 4
2.1. Archaeologically Sensitive Area on 1878 Thompson and West Map 18
2.2. Sanborn Map from 1897 Showing Archaeologically Sensitive Area 20
2.3. Newspaper Headlines after the Early Morning Explosion at the Western Fuse and Explosive Company ... 21
2.4. Sanborn Map from 1912 Showing Archaeologically Sensitive Area 23
2.5. Sanborn Map from 1925 Showing Archaeologically Sensitive Area 25
2.6. Sanborn Map from 1951 Showing Archaeologically Sensitive Area 26
4.1. New Construction Drawing and Archaeological Sensitive Area ... 44
4.2. Archaeological Site Plan ... 46
4.3. Birdseye View of the Melrose Neighborhood in 1909 .. 49
4.4. Margaret Stephenson Pryde ca. 1880s .. 50
4.5. Norman J. Pryde ca. 1930 ... 50
4.6. Shiraki family at Clement Street nursery, 15 June 1941 .. 51
4.7. Shinzo Shiraki watering flowers at his nursery on Clement Street, 15 June 1941 52
4.8. Ichiro Isokawa on Clement Street ca. 1919 ... 53
4.9. Ichiro Isokawa in Boy Scout uniform ca. 1925 ... 53
4.10. Ichiro Isokawa and friends on Clement Street ca. 1922 .. 54
4.11. Ichiro Isokawa and next door neighbor ca. 1922 .. 55
4.12. Isokawa family photos ca. 1917 to 1922, plotted on Sanborn Maps 57
5.1. Pit 1 Section and Plan Drawings .. 65
5.2. Pit 1 – Artifact Layout Photograph, 4411 Clement Street, the Pryde Family 66
5.3. Pit 2 Section and Plan Drawings .. 74
5.4. Pit 2 – Artifact Layout Photograph, 4411 Clement Street, the Pryde Family 75
6.1. Pits 20 & 24 Section and Plan Drawings ... 88
6.2. Pits 20 & 24 – Artifact Layout Photograph ... 89
6.3. Pit 6 Section and Plan Drawings .. 104
6.4. Pit 6 – Artifact Layout Photograph ... 105
6.5. Privy 23 Section Drawing .. 127
6.6. Privy 23 – Artifact Layout Photograph .. 128
7.1. Trench 8 Section and Plan Drawings ... 147
7.2. Trench 8 – Artifact Layout Photograph .. 148
7.3. Pit 25 – Artifact Layout Photograph ... 163
8.1. Aerial photo from 1933 Showing Archaeologically Sensitive Area and Sanborn Maps from 1912 and 1925 ... 166
8.2. Complexity of High Street Tableware Assemblages Compared to West Oakland Railroad Workers and Two Depression-era Sites .. 174
8.3. Alcohol Bottles from High Street Compared to West Oakland Railroad Workers 178
8.4. Insignia for the Young Men's Christian Association .. 179
8.5. Delegate badge for the Native Sons of the Golden West .. 180
8.7. Architectural Snapshots of the Stephenson Residence from the 1897, 1912, and 1925 Sanborn Maps ... 185
8.8. The Stephenson House, ca. 1920 ... 186
8.9. Sanborn Composite for 4425 Clement Street with Archaeological Features .. 188
8.10. Dated Materials from Pits 20 and 24 ... 189
8.11. Dated Materials from Privy 23 ... 190
8.12. Dated Materials from Privy 23 ... 191
8.13. Japanese artifacts in Trench 8, 4501 Clement Street, Orimoto Family ... 201

LIST OF TABLES

1.1. Artifact Catalog Categories .. 11
4.1. Phase 1 Features ... 47
4.2. Phase 2 Features ... 48
8.1. Comparisons of Stephenson Deposits with Other Sampled Oakland Households ... 168
8.2. Correlation among Stephenson and Cypress Households .. 169
8.3. Presence/Absence of Vessel Types, Compared to the West Oakland Class Segments 172
8.4. Tableware Vessel MNIs and Richness .. 173
8.5. Meat Weight Percent by Cost and Type .. 175
8.6. Occupation Spans by Members of the Charles F. Stephenson Household .. 182
8.7. Comparison of Assemblages Recovered from Stephenson Parcel by MNI ... 192
8.8. Correlations among Deposits .. 195
8.9. Trench 8 – Food Preparation/Consumption by Ceramic Origin ... 199
CHAPTER 1: INTRODUCTION

THE HIGH STREET SEISMIC RETROFIT PROJECT

The High Street Overhead Seismic Retrofit Project (Project; EA 16540K, CU 04248) involves retrofitting the overhead structure that is part of Interstate Route 880 from KP 43.6 to 45.5 (PM 27.4 to 28.0) in Oakland, Alameda County, California. Originally constructed from 1949 to 1950 as the East Shore Freeway, the overcrossing passed through a neighborhood first developed in the late-19th century. The existing High Street Overhead structure does not meet current seismic standards. Caltrans proposes to replace the existing overhead structure with a new wider structure that meets current design standards. In 1999 the proposed excavation depths for the new column footings were estimated to range from 2 to 3 meters (6 to 10 feet; Heidecker 1999:20). The final design depths were substantially greater. The State Route 77 interchange (at 42nd Avenue) will be reconfigured at grade, with frontage roads reconstructed as required. East Eighth Street will be realigned to the south through a parking lot. Oakport Street will also be realigned and will involve acquisition and demolition of buildings between Oakport and Jensen streets. A full description of the project is given in Heidecker (1999:1).

Historically the block was bounded by High Street, Clement (Clark), Jensen (Commerce), and 46th Avenue. The project area lies south of High Street, beneath State Route 880, and straddles the new and former alignments of Oakport Street and includes five parcels where it was believed historic archaeological deposits may have survived.

THE HIGH STREET ARCHAEOLOGY PROJECT

This report documents investigations carried out in the archaeologically sensitive portion of the Area of Potential Effects (APE) for the Project (Figures 1.1 and 1.2). That sensitive area was identified in previous research as the only location within the APE likely to contain properties eligible for the California Register of Historical Resources (CRHR) (Heidecker 1999; Mc Ilroy et al. 2002). Advance study of that sensitive zone was not possible because it lies under existing buildings and city streets. For that reason, a Treatment Plan (TP) was prepared to guide the discovery, evaluation, and treatment of any eligible properties during project construction (Koenig and Mc Ilroy 2002).

Legislative Context

As a state-only funded project, the High Street Overhead Seismic Retrofit Project was required to achieve compliance with California Public Resources Code 5024. This was achieved by the implementation of an archaeological study that meets standards set by Section 106 of the National Historic Preservation Act (NHPA) and its implementing regulations. Archaeologists investigated a portion of one city block that included portions of seven parcels (Figure 1.3). Archaeologists found eight features that appear to meet the requirements for potential eligibility to the CRHR under Criterion 4.

REPORT ORGANIZATION

The data from this investigation is presented in a format consistent with Block Technical Reports (BTRs) produced by the Anthropological Studies Center (ASC) for the previous Caltrans projects including the Cypress Freeway Replacement in Oakland and retrofit projects for Interstate 80 in San Francisco. While those projects spanned many blocks and had both
Figure 1.1. Project Vicinity
Figure 1.2. Project Limits and Archaeologically Sensitive Area
Figure 1.3. Archaeologically Sensitive Area with Historic Lot Lines
BTRs and Interpretive reports, this report contains both technical and interpretive elements. Data is presented in tables and graphics to reduce narrative.

The first chapter provides basic project information—description, legislative context, preliminary studies, and methods. Chapter 2 contains an historical overview of the neighborhood, including a brief history of the Japanese in the Bay Area. The research design, Chapter 3, covers archaeological formation processes and gives our theoretical orientation that spans three major research themes: Consumer behavior/strategies, Ethnicity/urban subcultures, and Household developmental cycles. Chapter 4 focuses down to our Oakland study area; it describes our two-phased testing program and findings and provides a block overview looking closely at the Stephenson family and the Japanese residents of High Street.

Chapters 5 through 7 provide the archaeological, artifactual, historical, and oral interview data for each of the three addresses on which archaeological deposits were found. The data are presented in a standard format to enhance comparative analyses. Three households are represented the Pryde family at 4411 Clement in the 1890s; the Stephenson family, related by marriage to the Prydes, at 4425 Clement ca. 1900–1941, and the Orimoto family at 4501 Clement from ca. 1930–1941. In Chapter 8 the report’s primary authors each approach the data from a variety of perspectives to address the project’s research questions. Each author was given the freedom to interpret the data according to their individual research interests in directions they felt appropriate. Hence, some interpretations—even of the archaeological site structure itself—may seem at odds with each other.

Much of the volume is a collaborative effort developed by the project team (see Appendix for personnel list) and previous researchers (e.g., Koenig and Mc Ilroy 2002; Mc Ilroy et al. 2002; Van Bueren 2008). Authorship is only credited for new, independently authored sections of the current report.

ARCHAEOLOGICAL PROJECT DESCRIPTION

Consolidated Approach

A consolidated approach to Public Resources Code 5024 compliance was followed in this investigation. The Treatment Plan (TP [Koenig and Mc Ilroy 2002]) outlined a process in which resources would be identified, evaluated, and treated in a single episode of fieldwork. This approach was adopted because the sensitive portion of the project’s Area of Direct Impact (ADI) is covered by modern development and it was essential to limit the duration of the fieldwork. In addition, construction sequencing made it necessary to carry out the archaeological investigation in two discrete phases of work.

Preliminary Studies

Sensitivity Studies

According to National Park Service (NPS) guidelines, archaeological sites in urban areas “are likely to be more or less invisible, buried under modern created land surfaces.” For this reason, the discovery phase of urban archaeological research “consists of field-checking predictions made on the basis of archival research” (NPS 1985:36).

Guidelines issued by the Advisory Council on Historic Preservation (ACHP) in its booklet Identification of Historic Properties provide more detail, stating that the identification phase consists of using “available information to develop a ‘predictive model’ indicating where historic properties are likely to exist” (ACHP 1988:21–22). The ACHP’s regulations for
Identification and Consideration of Archaeological Properties in an Urban Context (36 CFR 801) also recognize the problems in identifying urban archaeological phenomena. The regulations require archival research to define the likelihood that (1) properties potentially eligible to the National Register of Historic Places (NRHP) may have been created on the site and that (2) subsequent disturbance would have destroyed them. Where potentially eligible properties are likely to be present, and may be adversely affected by a given project, the project proponent must “fund a professionally supervised and planned archaeological salvage program.”

As most of the project area was covered with asphalt and buildings, and underneath the existing elevated freeway, an early objective of the archaeological component was to predict areas within the study area with the greatest archaeological sensitivity. Archaeological sensitivity is defined herein as the likelihood that legally important archaeological remains have survived to the present. This is a particularly important preliminary step since the 1950s freeway construction required realignment of historic streets. The intent of the preliminary studies was to enable archaeologists to concentrate their efforts in locations where the historic ground surface has remained unchanged or to which fill has been added, while avoiding potentially less productive areas, where the original ground surface has been removed or disturbed.

Several data sources were used to determine which portions of the project area have a high potential for intact archaeological resources. Historical maps provided clues to the topography of the project area during the period when potentially important historic-period archaeological deposits may have been created. These were compared to more recent maps and existing conditions to try and determine the extent of post-depositional disturbance on the potential archaeological remains.

Survey Reports

An Extended Phase I Survey by Mc Ilroy and others (2002) refined the sensitivity analysis of the APE and included the excavation of 31 test trenches. No intact prehistoric archaeological deposits, features, or materials were identified and the program was adequate to establish that the potential for encountering prehistoric resources in the APE was slight. Several test trenches uncovered historic-period archaeological materials and the researchers concluded that the area between High Street, Jensen Street, and the approximate extensions of Coliseum Way and 46th Avenue was likely to contain NRHP-eligible historic archaeological deposits and features. In particular, former residential occupations at 4327, 4331, 4411, 4425–4433, and 4501 Clement were considered likely to have produced eligible deposits and features. Koenig and Mc Ilroy (2002) then prepared the TP that guided the present investigation. That plan provided detailed parcel histories derived primarily from federal manuscript census records, city directories, and assessment maps.

Fieldwork

Archaeological investigations were carried out in open-area excavations of the block in two phases as joint efforts by Caltrans and the ASC. The first phase took place in June of 2008 after the Ameron building had been cut and refaced. The second phase took place in October of 2010 after Oakport Street had been realigned over the Phase 1 area. During Phase 1 a total of 10 features were identified, 5 fully excavated and the content of 4 determined to be potentially CRHR eligible (Van Bueren 2008). During Phase 2 a total of 6 features were identified and 3 determined to be potentially CRHR eligible and one kept as a contributor to a potentially eligible feature.
INVESTIGATION METHODS

Historical Research

Historical maps of Oakland were reviewed at the Bancroft and Earth Sciences Libraries of the University of California, Berkeley and at the Oakland History Room in the main Oakland Public Library. Early coast survey maps provided details on initial settlement of the vicinity, while assessment and Sanborn Company fire insurance maps provided more specific details on the development of the investigated neighborhood. Block Books provided information about property owners, tax assessments, and when improvements appeared or were no longer present on an annual basis. The first Block Book covering the sensitive portion of the APE was done in approximately 1880 when the area was part of the Brooklyn Township. Brooklyn Township was annexed into the City of Oakland in 1909 and from that date was included in Oakland’s volumes, available through 1925. Original hand colored Sanborn Fire Insurance Company map books of Oakland from the years 1897, 1912, 1925, and 1951 were also examined. Those maps provided exact locations of buildings and details of their configuration and construction.

To uncover information about the specific residents of investigated lots, prior research surveyed Great Registers of Voters, city directories, and United States Bureau of the Census (U.S. Census) population schedules for the years 1880, 1900, 1910, and 1920. Newspaper articles about the 1898 explosion in the project area were found using the newspaper index in the Oakland History Room. Several previously written histories were fundamental for writing the historical overview section of this report, especially Heidecker (1999) and Olmsted and Olmsted (1994). That data provided an initial basis for identifying historical associations for deposits found during the field investigation. However, associations for some discovered features required additional research.

That additional historical research involved examining documents and conducting interviews with people knowledgeable about the families associated with discovered CRHR-eligible archaeological features. Some documents were reexamined and new sources were also perused. Research expanded to include the 1930 federal manuscript population census, city directories from the 1930s and 1940s, deeds establishing transfers of ownership, obituaries, and World War II internment records for the Japanese families associated with Feature 8. Genealogical research established that the Pryde, Stephenson, and Giblin families on this city block were related and helped identify descendants. From the 1920s through 1941, the block was also home to a growing population of Japanese immigrants who worked in the gardening and nursery trade.

Early photographic evidence of the neighborhood, named after the nearby Melrose Railroad Station, focused on the business district and did not cover the residences on this block. These images were reviewed at the Oakland History Room of the Oakland Public Library. Images of families associated with investigated features and this city block were also sought on the Internet from sources such as the Online Archive of California (http://www.oac.cdlib.org/search.image.html) with no results. However, George Stephenson kindly shared images of some of the people associated with the eligible features investigated here during an interview conducted by Elaine-Maryse Solari.

Additional documentary research was also conducted with the aim of refining dating information for artifacts recovered in the four CRHR-eligible archaeological deposits. That research involved examining published sources of information about when and where manufacturing companies operated.
Field Methods

For historic sites, the research design specified several types of archaeological resources that may contain the types of data that are necessary to address the research questions. The research questions fall into two general classes that have some correspondence with these types of archaeological phenomena: questions that require primary deposits and landscape features that are arranged horizontally (such as sheet refuse and gardens, and structural remains such as building footings) and questions that require secondarily deposited assemblages of artifacts that are often arranged vertically (such as are often found in hollow/filled features such as backfilled wells, refuse pits, and privies). Most areas recommended for investigation of historic-period resources are located in the backyards of building lots: from the structure itself to the rear lot line. With this rear-yard focus, refuse pits, privies, and wells constituted most of the archaeological work. Sheet-refuse deposits, landscape features, and structural remains were also encountered.

Hollow/filled features are potentially important sources of discrete refuse caches. These features, their contents, and deposition can often be accurately dated and assigned to a historically documented household or business. The contents often include household ceramics, glass containers, food bone, and personal accoutrements. Features that have documented associations and a range and quantity of artifacts are among the most important potential sources of data that can be used to address the research questions. These features were excavated in a strictly stratigraphic manner, that is, according to the physical layers of deposition. The strata were used as the primary provenience for artifacts contained in them. Cross-sectioning was employed both to view the feature’s structure and to sample each layer without excavating the stratum in its entirety.

Sheet refuse, the second expected resource type, accumulates on living surfaces and may be the product of either primary or secondary deposition, or a catastrophic event. Such deposits may appear as either a relatively thin layer of debris located at an archaeological layer interface or as a series of superimposed layers of substantial thickness. Secondary depositions of sheet refuse tend to be relatively thick, reflecting their historic function as fill to raise low ground. Since primary deposits often occur at the interfaces of these layers, care is always taken when exposing these surfaces in areas such as domestic backlots. To the degree that the artifacts contained in a secondary deposition of this kind can be assigned to an identifiable historical unit at an interpretively useful scale, they are of potential value as sources of important data. Artifacts were not, however, recovered simply “because they are there,” since the important information in such a deposit may often be recovered by simply recording its structure.

Several kinds of data were recovered from every property in order to realize its research potential. These include information on the deposit’s structure, including stratification and features, areal extent and depth, and content including the nature and quantity of artifacts. In addition, the phenomenon was placed in its temporal and cultural/historical contexts.

All excavation was done stratigraphically, according to the physical layers of deposition. These layers were given context numbers and recorded on context sheets using the Harris Matrix (Harris 1979; Harris, Brown, and Brown, eds. 1993). As cultural features and stratification were identified during the test investigation, they were exposed in plan by hand, photographed, and mapped in relation to a permanent datum. The evaluation phase involves determining a feature’s structure and stratigraphic integrity, its approximate date of deposition, and range and quantity of artifacts. To assess each feature’s content and integrity, an appropriate portion of each were hand excavated. In the case of a refuse-filled privy, for example, the feature
was cross-sectioned and part of each layer excavated. The proper level of effort for each feature was determined as it was investigated by the field director. All units of excavation were recorded on detailed field forms on which the excavator and/or field supervisor noted site structure and/or content. Field forms are based on those developed by the Museum of London, Department of Urban Archaeology (Museum of London 1980, 1994).

Excavations were mapped in relation to permanent datum points and recorded in plans and cross-sections drawn to scale, as well as by photographs.

Excavated soils were passed through 1/8- or 1/4-inch screen, as appropriate, to document the presence of all classes of artifacts. Artifacts were initially identified and, when possible, dated in the field. Those belonging to features appearing potentially eligible were transported to the archaeological laboratory for verification of the initial description and subsequent cataloging. Materials from features appearing ineligible were reburied in the features from which they were excavated. To keep pace with the construction schedule, the matrix from some features was bulk bagged and taken to the lab for processing and later evaluation.

Laboratory Methods

The laboratory methods were developed for use on late-19th- to early-20th-century stratified urban deposits, in which the most common features to be excavated are privies, pits, and wells containing large quantities of artifacts. These hollow features are usually filled over a relatively brief period of time, often representing a single event. The sections below describe the methods used to process and catalog the collections.

Processing Procedures

For each context (numbered field stratum) from a potentially eligible feature, all recovered materials were taken to the laboratory facilities of the ASC at Sonoma State University, where they were cleaned, sorted by material type, permanently labeled with a number, and cataloged. A provenience-based numbering system that includes two elements was used: the main catalog number represents the context, or layer, from which the artifact was recovered, while the subcatalog number is an assigned sequential number, beginning with 1 for each artifact or lot (group of like artifacts), within a context.

At the lab, faunal bone was separated from the rest of the materials. If the condition of the avian and mammal bone was very good, it was lightly cleaned with water. When conditions permitted the fish bone was also rinsed.

Once labeled, the artifacts were grouped by feature and cataloged. As each material class (ceramic, glass, metal, and other) was laid out, artifacts were first crossmended within contexts and then throughout the feature. Information on crossmends between contexts and features was subsequently used, in conjunction with stratigraphic data, to interpret the history of the deposit. Ceramics were grouped by fabric and then sorted by form, function, and decoration. Makers’ marks and identifiable patterns were researched to ascertain origin and date range.

Glass artifacts were initially sorted by color and then by form: tableware/serving/drinking use, bottles, lamp-related items, or windowpane. Tableware/serving/drinking items were cataloged by color, form, function, and decoration. Bottles were cataloged by color and function, where bottle shape, finish type, and embossment were used to determine original bottle contents. Temporally diagnostic manufacturing techniques were noted where applicable. Embossed and marked items were researched to identify manufacturer, contents, origin, and date range. Lamp-related items such as globes, shades and chimneys were cataloged by color,
function, and decoration. Embossed items were researched to identify manufacturer and date range. Window glass was counted, weighed, cataloged, and discarded.

Metal artifacts were identified by material and function. Complete nails were counted and measured while fragments were sorted, nail heads counted, and the lot weighed before being discarded. Marked items were researched, identified, and dated where possible. Nondiagnostic items were counted, weighed, cataloged, and discarded. Other artifacts—such as buttons, slate pencils, tobacco pipes, and game pieces—were identified by material and function.

Once the collection was processed, photography began. Artifacts were laid out and photographed as a group, and close-up vignettes were taken of selected artifact groupings. Both were photographed digitally and archived on compact disc.

Functional Categories

The artifacts are presented in the artifact catalogs and summary tables according to a general functional classification based on Stanley South's (1977) categories, which have been modified and expanded for use with mid-19th- to early-20th-century sites in the western United States. The materials are separated into broad Group divisions and then further split into Class and Subclass. For the purposes of analytical research and intrasite comparison, the Class division is the most versatile level, allowing a comprehensive range of functions while maintaining a manageable aggregate of categories. Table 1.1 is a list of the classifications used to define functional types for this project.

Minimum Number of Items (MNI)

When artifacts are quantified in a standard analytical manner, they can be used for intrasite and intersite comparison and analysis. MNIs are the minimum number of individual items (not the number of fragments) represented in an artifact collection (e.g., a bottle broken into 10 fragments is still only 1 bottle).

After crossmending was completed, the artifacts were cataloged and the MNI was determined. Each intact object (e.g., complete unbroken bottle) received an MNI of 1. Items that crossmended and were reconstructable, with no missing pieces, were also given an MNI of 1. The remaining artifacts were carefully studied to ascertain whether non-crossmending items could be from the same item. For example, saucer rim sherds that did not physically mend but were of the same material, curvature, thickness, glaze, and decoration were considered associated and given an MNI of 1 for the lot. Similarly, fragments representing unique decorative patterns or forms would each be given an MNI of 1. When it was determined that items conceivably could be from the same object, an MNI of 1 was assigned to the group. All items with markers’ marks that could not be associated with other items in the feature received an MNI count. Unmarked/nondiagnostic fragments that conceivably could be associated with marked/diagnostic items did not receive an MNI. Artifact fragments that exhibited form, color, material, or function unique to a feature were assigned an MNI of 1 (e.g., a single cobalt-blue glass bottle body fragment where there was no other cobalt-blue glass in the feature).

Artifacts that always would have been used together also received on MNI of 1 (e.g., teapot and lid, lid with drainer and dish of a soap-dish set). Using this criterion, objects of different materials could be combined and given an MNI of 1 (e.g., a glass nursing bottle with its associated ceramic cap, a glass beer bottle and its associated ferrous crown cap). Items that are often considered a set but not always used or even purchased together, such as a cup and saucer or a washbasin and pitcher, were each given a separated MNI. Shoes were
Table 1.1. Artifact Catalog Categories

<table>
<thead>
<tr>
<th>Group</th>
<th>Class</th>
<th>Subclass Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities</td>
<td>Advertising</td>
<td>pins, signs</td>
</tr>
<tr>
<td></td>
<td>Animal Husbandry</td>
<td>horseshoes</td>
</tr>
<tr>
<td></td>
<td>Collecting</td>
<td>stalactites, coral</td>
</tr>
<tr>
<td></td>
<td>Commerce</td>
<td>coins, banks, scale pans</td>
</tr>
<tr>
<td></td>
<td>Entertainment</td>
<td>music (e.g., harmonicas), games (e.g., checker pieces, dominos)</td>
</tr>
<tr>
<td></td>
<td>Firearms</td>
<td>guns, ammunition</td>
</tr>
<tr>
<td></td>
<td>Painting</td>
<td>paint brushes, paint cans</td>
</tr>
<tr>
<td></td>
<td>Pets</td>
<td>bird feeders, dog collars</td>
</tr>
<tr>
<td></td>
<td>Tools</td>
<td>axes, files, folding rulers</td>
</tr>
<tr>
<td></td>
<td>Transportation</td>
<td>carriage parts, harness parts</td>
</tr>
<tr>
<td></td>
<td>Writing</td>
<td>pens, pencils, ink bottles</td>
</tr>
<tr>
<td>Domestic</td>
<td>Clothing/Footwear</td>
<td>needles, bluing balls, shoe polish bottles</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food Prep/Consumption</td>
<td>kitchen (e.g., baking pans, skillets), serving (e.g., platters, teapots), tableware (e.g., plates, forks), drinking vessels (e.g., tumblers, stemware, cups)</td>
</tr>
<tr>
<td></td>
<td>Food/Food Storage</td>
<td>canning jars, crocks, retail food containers (e.g., pickle bottles, Worcestershire sauce bottles)</td>
</tr>
<tr>
<td></td>
<td>Furnishings</td>
<td>furniture, flower pots, vases, pictures</td>
</tr>
<tr>
<td></td>
<td>Heating/Lighting</td>
<td>lamps and chimneys, light bulbs, candle holders</td>
</tr>
<tr>
<td>Indefinite Use</td>
<td>Misc. Beads</td>
<td>identified items with more than one potential original use</td>
</tr>
<tr>
<td></td>
<td>Misc. Closures</td>
<td>beads with more than one potential original use</td>
</tr>
<tr>
<td></td>
<td>Misc. Containers</td>
<td>closures associated with contents of indefinite use</td>
</tr>
<tr>
<td></td>
<td>Misc. Metal Items</td>
<td>bottles, jars, and cans with unidentified contents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hardware metal artifacts (e.g., wire, sheet metal) items with more than one potential original use (e.g., bells)</td>
</tr>
<tr>
<td>Industrial</td>
<td>Machinery</td>
<td>spark plugs, gears</td>
</tr>
<tr>
<td>Personal</td>
<td>Accoutrements</td>
<td>purses, eyeglasses, jewelry</td>
</tr>
<tr>
<td></td>
<td>Clothing</td>
<td>garments, buttons, clothing buckles</td>
</tr>
<tr>
<td></td>
<td>Footwear</td>
<td>shoes, shoe eyelets</td>
</tr>
<tr>
<td></td>
<td>Grooming/Health</td>
<td>toiletry items (e.g., perfume bottles, brushes, chamber pots), medicine bottles (e.g., patent/ proprietary, pharmacy, bitters, vials), syringes</td>
</tr>
<tr>
<td></td>
<td>Social Drugs</td>
<td>retail alcoholic-beverage containers and closures (e.g., wine, beer, champagne, distilled beverages), spittoons, pipes, opium lamps</td>
</tr>
<tr>
<td></td>
<td>Toys</td>
<td>dolls, tea sets, marbles</td>
</tr>
<tr>
<td>Structural</td>
<td>Fixtures</td>
<td>sinks, toilets</td>
</tr>
<tr>
<td></td>
<td>Hardware</td>
<td>hinges, brackets, nails</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>window glass, brick</td>
</tr>
<tr>
<td>Undefined Use</td>
<td></td>
<td>unidentified items (e.g., melted glass, amorphous metal), slag, coal</td>
</tr>
</tbody>
</table>
given MNIs based on pairs (e.g., 3 shoes of the same style and size, 2 left and 1 right, were given an MNI of 2); shoe-related paraphernalia, such as eyelets, were not given an MNI when located in contexts with shoes. Since eyelets were used with items other than shoes, they were each given an MNI when not found in a context with shoes. Similarly, individual buttons were given MNIs, as it was not feasible to assign button counts to separate items of clothing. Another artifact type for which it is difficult to determine MNI counts is beads: for example, a single lamp whimsy could contain hundreds of beads of various styles and colors. When a function could not be determined, each bead received an MNI of 1.

Building material was sampled in the field and, unless marked or of architectural interest, was not brought back for cataloging. Without knowing the original window size, it is difficult to establish an MNI for window glass; therefore, fragments were counted but not assigned an MNI. Finally, amorphous items (e.g., melted glass, rusted metal lumps) were not assigned MNIs. The proportion of Undefined items varies due to differential preservation within features; since they cannot be identified, they were not given MNI counts.

Dating Methods

All artifacts were studied to determine if they were temporally diagnostic. When present, ceramic makers’ marks were noted and researched to ascertain manufacturers’ dates of operation; named decorative patterns were also investigated and dated where possible. Where relevant, decorative techniques with known dates of production were noted (e.g., decalcomania became popular in the 1890s). As a result of the McKinley Tariff Act in 1891, all foreign-made items, including ceramics, were required to bear the name of the country of origin. Marks without country of origin must date before this act and were assigned an end date of 1891 or earlier. Ceramic Registry marks—assigned to ceramic patterns and shapes that were registered with the Patent Office in London—functioned as a form of patent protection and were good for a period of three years from date of issue. For dating purposes, when a Registry mark was present on a ceramic artifact, the date range assigned was three years from the date of Registry mark issue. Thus a Registry mark of 22 August 1856, would have a date range of 22 August 1856–1859. When makers’ mark end dates were later than the date that the lot address was open for deposition, the date of lot closure should be considered the end date. For example, if an item with a ceramic mark utilized between 1885 and 1946 was found in a feature on a lot that was paved over in 1938, the date range would be 1885–1938. To avoid skewing mean ceramic dates, vessels with open-ended dates were not typically included in the calculations. In the case of Pit 6 and Privy 23 the number of open-ended dates required these be used in calculations. An end date of 1943 was used. For “circa” dates the listed date was used. For “late” an 8 was used and 5 for a mid-decade date. For example a begin date of late 1930s is 1938 and a 1930s date is 1935.

Glass artifacts with embossments and/or makers’ marks were noted and researched to determine place of origin, contents, and production date ranges. Date ranges were based on when the company was formed, when it changed ownership or moved to a new address as listed in the embossment, and when the product was patented. By using both the bottle manufacturer and the bottle contents manufacturer, date ranges were refined. Temporally diagnostic manufacturing techniques were also used for dating. For instance, the crown cap was introduced in 1892; if a bottle company was in business from 1880 through 1920 and the bottle had a crown finish, a beginning date of 1892 would be assigned. Pressed-glass patterns were studied and identified where possible. Occasionally patterns could be dated or assigned a probable manufacturer. Finally, some glass items retain patent dates (e.g., glass illuminators), which were recorded.
The Latin phrase *terminus post quem* (TPQ; “limit after which”) designates a relative archaeological dating technique. In the absence of disturbance or intrusion, the contents of an artifact-filled pit must have been placed there after the earliest possible manufacture date of the most recent artifact contained within it.

Artifact Tables

The artifacts from each analytical unit (either a single context or a group of related contexts) are described in several types of tables that focus on different descriptive attributes, such as function, decoration, and dating information, while specific functional types are presented in their own tables where appropriate. Some artifact types—such as building material, window glass, buttons, beads, and amorphous items—are not included in the artifact group summary tables, although they are mentioned in the MNI section. These types of items may help understand the circumstances of deposition, but are often otherwise meaningless and tend to skew comparisons between deposits. Likewise, each food-refuse subclass is summarized in its own individual table. Inclusion of counts from even relatively small assemblages of these remains can potentially multiply total counts manifold, reducing all other artifact types to a small percentage of the total. Further, the presence or absence of small ecofacts, such as fish bone or seeds, can be a function of differing preservation or varied sampling strategies among features, greatly reducing the comparative research value of this information.

Food Refuse Analysis: Faunal Remains

Food bones were identified using the ASC comparative collection. The Bone and Butchering Analysis System (BABAS) was used for data entry and analysis (Gust 2001). Only the combined analytic units of Features 6 and 23 \((n = 132) \) and Features 1 and 2 \((n = 103) \) had sufficient quantity (a number of individual specimens [NISP] of 100 or more) to be able to address statistical analysis issues or special studies.

The faunal specimens were received by the faunal lab in clean condition, labeled and sorted by context. Items that could not be labeled because of small size or poor condition were contained in bags labeled with the appropriate provenience information. As a statistical standard, 100 was chosen as the minimum number of identifiable specimens required for analysis. In the first step of the process, all of the labeled faunal material was removed from its packaging and spread out on a table. The initial sort involved grouping by general animal categories (avian elements, small and very small mammal, medium and large mammal, fish, shellfish). The medium-to-large dietary animals (cow, sheep, pig, and occasionally deer) were further divided by element during the first sort.

Information on provenience, taxon (cow, sheep, etc.), element (humerus, femur, rib, etc.), portion (part of an element), side, epiphyseal-fusion status (degree of bone-suture closure, to determine age at death), butchering cuts, tool marks (saw, knife, ax, etc.), taphonomic factors (burning, weathering, and gnawing), and cultural modification (shaping, polishing, etc.) were recorded for each specimen within the computerized BABAS data-entry form. In addition, specifics on meat type (beef, mutton, pork, etc.), retail cut (porterhouse, sirloin, brisket, etc.), and chunk (cuts appropriate for roasts, steaks, soups and stews, or indeterminate) and steak equivalents were recorded. The MNI was determined during the hands-on identification and data-entry process. The MNI is based on the quantity of a particular element or portion of an element, by side, while taking the age and size of the specimen into consideration. Whenever possible, identifications were made to at least class or family level. None of the specimens were weighed.
Discard Policy

Important Features. Some types of materials from important features were discarded after they were analyzed, catalogued, counted, and weighed. Identification of those materials was based on lack of long-term research values, excessive quantity, poor condition, and/or health and safety risks. The discarded types included the following:

- Window glass
- Undiagnostic glass lamp chimney and bottle body fragments
- Nails (after being identified by type and given MNI totals)
- All leather and textiles (after being analyzed by a specialist) (Leather requires treatment with potentially hazardous and flammable material in order to be preserved. Only leather artifacts with clear interpretive value would be treated in this way.)
- Metal scraps, sheets, strips, and wire
- Corroded, non-temporally diagnostic ferrous items including wire, pipes, cans and lids, bolts, tubes, pans, and straps
- Slag and amorphous metal and glass

Curation

All archaeological material from this investigation is the property of Caltrans. These artifacts, as well as field notes, drawings, special studies, and technical reports, are permanently curated and available for study at the David A. Fredrickson Archaeological Collections Facility at Sonoma State University.
CHAPTER 2: NEIGHBORHOOD OVERVIEW

This chapter sketches the historical circumstances of the people who occupied the Clement Street neighborhood in Oakland during the late-19th and early-20th centuries. Broad regional trends are first explored before narrowing the focus to the families who created the archaeological features analyzed in this report. This background delves into available historical documents and the memories of surviving descendants as a way to put archaeological discoveries in context and interrogate the meaning of surviving historical and archaeological evidence.

NATURAL SETTING

The San Francisco Bay area lies within the Coast Ranges geomorphic province, which is characterized by a series of nearly parallel, northwest-trending mountain ranges, and by similarly trending valleys and fault systems. The High Street Project area is situated along the east-central side of San Francisco Bay in the eastern part of Oakland, California. The bay is a large body of open water about 88 km long and 5 to 19 km wide (about 55 miles long and 3 to 12 miles wide) that is generally less than 3 m (10 ft.) in depth, although some deeper channels are present. The project area is adjacent to former marshlands along San Leandro Bay near Alameda.

The deepest bay channel lies at a depth of approximately 104 m (341 ft.) beneath the Golden Gate Bridge between the San Francisco and Marin peninsulas. The bay is surrounded by numerous tidal marshlands that lie at or near sea level. The marshlands are generally bordered by gently sloping landforms that form a series of broad alluvial fans and floodplains within the valleys that extend from the bay into the surrounding uplands. The uplands consist of rounded hills and relatively steep mountain slopes, with ridges that are more than 305 m (1,000 ft.) above mean sea level (amsl) and a few peaks that are more than 1,220 m (4,000 ft.) amsl.

The Oakland area enjoys a Mediterranean climate that is characterized by mild, wet winters and warm, dry summers. Temperatures generally range from 65 to 90 degrees Fahrenheit during the summer, and from 30 to 55 degrees Fahrenheit in the winter, with a mean annual temperature of about 56 degrees. During the second phase of fieldwork in October 2010 the temperatures rose to 100 degrees Fahrenheit. Precipitation generally occurs between October and April, with a mean annual precipitation of 65 cm (25 inches) or less. The prevailing winds are generally from the west-northwest, with a wind speed of 10 km (6 miles) per hour or less, more than 50 percent of the time (Welch 1981:1).

SPANISH AND MEXICAN PERIOD

In 1769 Gasper de Portola and his party were the first Spanish explorers in Alta California to see the San Francisco Bay. Realizing the strategic importance of the harbor, Captain Juan Bautista de Anza returned in 1776 to establish the San Francisco Presidio. The same year, Mission San Francisco de Asís (Mission Dolores) was established on a creek several miles southeast of the presidio. Other missions were established around the bay, including Santa Clara de Asís in 1777 and San Jose in 1797. During the Mission period (1776 to mid-1830s), the mission fathers were responsible for overseeing the vast areas of land that were allotted to each individual mission. With the help of the local Indians as a large labor force, the missions were leading producers of food and hides and tallow from their large herds of cattle. Life
in the missions was devastating for the Indian populations. At Mission San Jose, between the years of 1802 and 1822, 4,573 Indians were baptized, but 2,933 Indians died, and by 1822 only 1,620 Indians had survived (Baker 1914:449). Under Mexican rule after 1822, the mission population continued to decline.

After the secularization of the missions by the Mexican government in 1833, the vast tracts of mission lands were granted to deserving citizens. Before secularization the Spanish governments awarded only three individuals with large landholdings in what now constitutes the counties of Contra Costa, Alameda, Santa Clara, Santa Cruz, and San Francisco. One of these unusual land grants was given to Sergeant Luis María Peralta on 3 August 1820 by Governor Pablo Vincente de Sola. Peralta had been on the Anza expedition of 1776 at age 17. He enlisted in the Monterey Presidio, transferred to the San Francisco Presidio, and helped to found the mission in Santa Cruz in 1791. In 1807 he was appointed comisionado at Pueblo San José, a post he held until the transfer of leadership to the Mexicans in 1822 (Bagwell 1982:11–12).

Peralta’s grant, which he called Rancho San Antonio, was 17,400 hectares (ha) (43,000 ac.) and included all of present-day Albany, Berkeley, Emeryville, Oakland, Piedmont, Alameda, and part of San Leandro. The rancho adobes, which were located at 2511 34th Avenue, have been a City of Oakland Landmark site since 1975. In 1842 Don Luis María Peralta divided the Rancho San Antonio between his four sons. The High Street Project is located in the 6070 ha (15,000 ac.) given to Antonio María Peralta, the third youngest son, and included the area that would later become Brooklyn Township and the Melrose District (Hoover et al. 1990:9).

Brooklyn Township supported the only timber in the East Bay that was suitable for building. “The Redwoods of San Antonio” was the location of a lumber camp until 1849, when the last trees were felled. The land of Rancho San Antonio was also used for grazing and farming, although the coastal portions were uninhabited prior to 1850 (Hoover et al. 1990:18). Like so many of the Californio ranchos throughout California, Rancho San Antonio was subject to squatters and land speculators during the beginning of the American period. The American annexation of California in 1846 prompted some Americans to immigrate, but it was not until the initial gold discovery in 1848 and the rush to San Francisco and the gold fields in 1849 that land-hungry Euro-Americans began to challenge the land rights of Californio rancheros.

AMERICAN PERIOD

Until the arrival of the Americans, land was abundant and settlers were few, so in 1850, when three squatters built a small house on what would become the foot of Broadway and claimed the surrounding 65 ha (160 ac.) of land, Vicente Peralta did little to stop them. Peralta eventually negotiated a lease with Edson Adams, Horace W. Carpentier, and Alexander J. Moon. The three men hired a Swiss engineer, Julius Kellersberger, to design a street grid for the new town they intended to form, and they began selling lots of land, although they did not own the land they were selling (Bagwell 1982:27). After an extended legal battle, Peralta sold almost all of his land to pay for legal fees. In 1852 Carpentier sponsored a bill incorporating the town of Oakland; two years later the bill was recognized and Oakland officially became a city.

Others leased land from the Peraltas, including Moses Chase and the Patten brothers, Robert, William, and Edward. They laid out the town of Clinton on a tract of 194 ha (480 ac.) leased from Antonio Peralta in 1853 and built a bridge across the San Antonio Slough to connect their new town with Oakland. Another small town, San Antonio, was surveyed in
1854. By 1856 Clinton and San Antonio were combined to form Brooklyn. In 1870 Brooklyn Township was incorporated (Hoover et al. 1990:18–19).

The growth of Oakland and its surrounding communities was linked to the success of San Francisco. Oakland was an early industrial center, supplying goods and services to those across the San Francisco Bay who had fewer natural resources to exploit as well as a more limited land base within which to operate. Oakland also became an ideal location for more inexpensive housing for working-class families. Oakland was a city reliant on good transportation methods for commuting and exporting products.

In 1863 a wharf was constructed at the foot of Seventh Street to provide ferry service to San Francisco, and a daily rail service along Seventh Street connected downtown Oakland to the ferry terminal. The following year the San Francisco and Alameda Railroad Company began service to Brooklyn Township and the Melrose District at 46th Avenue. Schooner service was also provided to San Francisco from Clark’s Landing on San Leandro Bay.

Antonio Peralta sold the land that was to become the Melrose District of Brooklyn Township to Henry S. Fitch for $14,000 (Oakland Unified School District 1992:3). In order to serve the cattle ranching industry that was flourishing in the area, Fitch created Fitchberg and built a cattle-loading depot on Melrose Street near 47th Avenue in the 1870s. Melrose Station became the terminal point of the Southern Pacific Railroad local line. An 1871 historic map shows the area that would become the APE not yet divided into lots. The nearest structures were H. Clarke’s House, Clark’s Landing, and a barn. H.C. Clark had immigrated to California in 1850 from Ohio. In 1853 he moved to Brooklyn Township and established several business endeavors, including managing a line of schooners between his landing and San Francisco. He also owned the Pacific Reduction Works, a smelting and reduction plant, located southeast of the APE. By 1873 the Pacific Cordage Company began operations immediately southwest of the APE. At the time it was one of only two cordage manufacturers on the Pacific Coast. The block that is the focus of this investigation was subdivided in 1874 (Alameda County Recorder’s Office [Alameda County] Maps 2:45).

The 1878 Thompson & West map (Figure 2.1) shows the APE as part of a tract owned by H. Robinson. The Block Book for the Township of Brooklyn from 1880 indicates that Lot 8 had improvements done in that year. Daniel Connor and his wife, Margaret, both from Ireland, owned the parcel. The 1880 census reveals that Margaret Connor was actually widowed, although the property remained in her husband’s name until 1889. The 1880 census tells of neighborhood that included many farmers and dairymen. A large percentage of the residents were originally from the British Islands, Canada, and the United States. The population was relatively young and there were many children.

Despite the almost rural impression of the area from the census manuscripts, there were many industrial works operating in the neighborhood. The abundance of land and close proximity to the water made Melrose an ideal location for large factories and warehouses. The area was promoted in one of Oakland’s newspapers as a model location for both industrial and residential use.

With its background of gently sloping lands from the hills for residence purposes and a great stretch of level land for the accommodation of factories, warehouses, and other lines of business, it could hardly be possible to find a finer situation for the founding of a great city [Oakland Tribune 7 July 1907].

The “great stretch of level land” was also increasingly residential. At this time the population of Melrose continued to be primarily those of western-European descent, now
Figure 2.1. Archaeologically Sensitive Area on 1878 Thompson and West Map
including many from Germany, Switzerland, and the Low Countries. Occupations continued to be working class, but there was an increase in clerical and professional jobs such as clerks, teachers, and engineers. Norman Pryde and his family were the first to build a home in the sensitive portion of the APE in 1889. Pryde acquired the lot on May 24 from the Puget Sound Lumber Company (Alameda County Deeds 373:259) and was listed in an 1889–1890 City Directory as an employee of the Melrose Smelting Works residing in Melrose. By 1892–1893 he was listed more specifically on Clark Street.

Residential development was present by 1897 on all three of the city lots where eligible archaeological features were later found. The Sanborn (1897) fire insurance map shows houses and outbuildings on Lot C (later 4411 Clement), Lot A (later 4425 Clement) and Lot B (later 4501/4513 Clement) (Figure 2.2). Just two years later the 1899 Block Book indicates a local disaster that occurred in the APE and surrounding area. All properties on the block had been damaged or destroyed by an “explosion.” Further research led to an amazing story about the explosion and the destruction it caused.

On the evening of 18 July 1898, so the story goes, a Chinese man by the name of Gung Ung Chang, or Gong Wong Chang, killed another Chinese man named Ham Si Sing due to a quarrel over a $48 lottery ticket. In order to evade the police, Chang fled to his place of work, the Western Fuse and Explosive Company located on the corner of Clark (Clement) and A (45th) streets (across from the APE). He barricaded himself in the magazine building, which contained at least five tons of gunpowder. Chang threatened to blow up the building if anyone came near.

Several deputy sheriffs and other law enforcers took turns guarding the magazine, while they repeated demands for surrender throughout the night. At 5 am the following morning, Chang said he wanted to speak with the officers. As they approached, the explosion took place. Constable Koch, four deputy sheriffs, a neighbor, and Chang died in the blast. The buildings of the fuse company were completely destroyed, along with four houses on Clark Street. Forty nearby houses were also severely damaged, as was the Pacific Cordage Company buildings, which were long abandoned by this time. Newspapers headlined the event (Figure 2.3) and flags were requested flown at half-mast.

The aftermath was horrific. Neighbors were injured and homeless; the explosion was felt as far as San Jose. Body parts were reportedly found several blocks away. The neighbors threatened to sue the fuse company for damages. Most rebuilt their houses. The Western Fuse and Manufacturing Company did not plan to rebuild in that location according to newspaper accounts (Oakland Enquirer 1898; Oakland Tribune 1898).

Anti-Chinese sentiment during this period was strong, and the story must be viewed with caution. The series of Chinese Exclusion acts that began to be passed in 1882 were still in effect. The height of terrorism against the Chinese population that had occurred in the late 1880s had subsided, although by no means were they free from discrimination at the end of the 19th century.

Businesses advertised that they operated without the help of Chinese labor. Being denied most amenable employment, many Chinese were forced to work in dangerous occupations, such as at the fuse manufactory.

Newspaper articles about the 1898 explosion were unforgiving, although some attempt was made to pardon the many other Chinese men who lived and worked for the company. Only one interview with neighbor Charles Stephenson offered another possible explanation of the event. Stephenson reported that he saw a plank fall outside the door to the magazine
Figure 2.2. Sanborn Map from 1897 Showing Archaeologically Sensitive Area
Figure 2.3. Newspaper Headlines after the Early Morning Explosion at the Western Fuse and Explosive Company
just prior to the explosion and believed that the plank was being used to force the door open. This account was repudiated by the deputies who said “no force was used on the barricade” (Oakland Tribune 1898). The truth may never be known since it was far easier to blame a Chinese scapegoat already accused of murder than to admit that deputies may have precipitated the devastating blast.

THE NEW CENTURY

In 1901 the U.S. Army Corps of Engineers completed a project that created the island of Alameda. The “U.S. Tidal Canal” became a navigable channel that joined San Leandro Bay with Oakland Inner Harbor, and made the Oakland shoreline more valuable. Several years later the 60-year monopoly on the use of Oakland’s waterfront was finally broken, and new railroads were constructed that connected Oakland and its outlying communities. Industries were attracted to the newly created shore, accelerating growth in the Clement Street neighborhood.

The Melrose District received a huge influx of home-seekers after the 1906 San Francisco earthquake and fire. Three years later, Oakland annexed 7855 ha (30.33 sq. mi.) of Brooklyn Township, including Fruitvale, Melrose, and Fitchburg. The population in our study area remained remarkably stable after the 1898 explosion, perhaps because the Western Fuse Company relocated. Most owners rebuilt and stayed in the neighborhood. Most were primarily western European and American-born until the 1920s. The neighborhood remained mixed industrial/residential, as seen in the 1912 Sanborn map (Figure 2.4).

Municipal utility services greatly improved following the turn of the century. Oakland’s first sewer was installed in 1864 from Fourth and Broadway to San Antonio Creek. By 1872 the city’s growth prompted the initial planning of an expanded system that included approximately sixty miles of drainage pipes that would empty into Lake Merritt. The system was constructed between 1874 and 1875, although it could not handle both storm runoff and the volume of sewage, and caused severe pollution in the lake.

Finally, beginning in the mid-1890s, the city installed a sewer system that carried waste out into the San Francisco Bay. The system was expanded and modernized, connecting the newly annexed areas of Brooklyn and Melrose (Bagwell 1982:131). Water pipes were installed beneath High Street and San Leandro Road by 1903 (Sanborn 1903). By the early part of the mid-20th century, water, sewer, electrical, and gas lines had been constructed throughout what would become the High Street APE (Heidecker 1999:8).

Several new companies opened near the study area during the first two decades of the 20th century. The Leona Chemical Company operated a chemical manufacturing business out of several buildings located on a large parcel of land to the west of High Street between Clement Street and the Southern Pacific Railroad tracks. The company was in business from at least 1910 until 1921 (Heidecker 1999:16). In 1913 the Electro-Alkaline Company began its operations at 809 High Street. In 1914 the company officially changed its name to the Clorox Chemical Company. The Clorox buildings are still located on 0.8 ha (2 ac.) of land between Wattling Street, High Street, 42nd Avenue, and the Southern Pacific Railroad tracks.

Clorox was one of the first companies in the United States to commercially produce liquid chlorine bleach. In 1916 Clorox developed a less-concentrated solution for domestic use and the product became a household name. Production at this location stopped in 1992 and the buildings are currently used for storage (Heidecker 1999: Attachment B; Krase 1998). Also near the APE were several smaller businesses, such as Gilbin’s Dairy on the corner of
Figure 2.4. Sanborn Map from 1912 Showing Archaeologically Sensitive Area
Commerce and High streets, the Standard Oil Company on High and Clement streets, and Murata Nursery on High Street.

The 1920 US census population schedule provides the first indication of a change in the demographics of the study area. The 1925 Sanborn map shows ongoing use of the three parcels investigated in this study, with the addition of several small residences on the Stephenson lot at 4425 Clement (Figure 2.5). Although most residents were of western-European descent, Japanese families and a Portuguese family occupied residences, while Italians and Mexicans moved into the surrounding area. The proportion of Japanese residents on the study block increased over the next two decades. By 1930 the population of Blocks 2241 and 2242 was almost half Japanese in origin. Most of these people were renters who worked in the gardening and nursery trades. Their internment by the War Relocation Authority in 1942 coincided with conversion of the block to industrial and public uses during World War II.

Completion of the Bay Bridge in 1936 affected the use of the railroad and consequently the surrounding neighborhoods. With increased automobile transportation and a new route to San Francisco, living near a railroad depot became less important. The result was an exodus of middle- and upper-income families to more distant suburbs. At the same time, Oakland’s population soared with the influx of military personnel and recruitment of factory workers from the south during World War II. The High Street Homes, built in 1944 southeast of the study area, consisted of 540 “temporary” residential units to house white wartime workers. Although considered temporary, they were used as low-income housing into the early 1960s.

The last trains served Melrose Station in 1941. Increased auto traffic resulted in the construction of the East Shore Freeway (now Interstate Route 880) in 1949 to 1950. The freeway included the High Street Overhead structure whose retrofit was the impetus this archaeological project. Construction of the freeway included right-of-way acquisition that encompassed the last home still occupied in the sensitive portion of the study area (4425 Clement) by 1943 (Alameda County Official Records 4452:461). The owners of the steel fabrication business at 4411 Clement successively acquired the remainder of the Rodda property (the entire south end of the block including 4501 Clement) in 1945 and the rest of the Stephenson property by 1951 (Alameda County Official Records 6421:437–438). The 1951 Sanborn map shows these new developments (Figure 2.6).
Figure 2.5. Sanborn Map from 1925 Showing Archaeologically Sensitive Area
Figure 2.6. Sanborn Map from 1951 Showing Archaeologically Sensitive Area
By the time Japanese families began living on the 2241 Block of Clement Street in Oakland, the Japanese had been living, working, and establishing communities within the United States for over 30 years. Japanese first came to the United States in significant numbers in the late-19th century to escape high land taxes and reforms of the Meiji government in Japan. Most of these immigrants worked as laborers in agriculture, railroad, timber, manufacturing, and service industries, and were concentrated in Hawaii and the West Coast (Ng 2002). By 1900 42 percent of the continental Japanese population was in California; by 1930 it had risen to 70 percent (Takaki 1998). Japanese immigrants arrived in America amidst a climate of anti-Asian sentiment largely focused on the Chinese who had come before them. They endured much of the same discriminatory treatment as the Chinese including name calling, violence, segregation, and laws that aimed to thwart upward mobility.

Many Japanese immigrants were upwardly mobile, finding success particularly in agriculture. As many came from farms in Japan, their experience and skills made occupations in the agricultural industry a natural fit. More than half of the immigrant population in California was engaged in agriculture in 1915, mostly as farm laborers (Ichihashi 1915; Strong 1933). The number of Japanese who owned land and ran independent farms, however, was steadily growing. Japanese Californians operated 29 farms on 1,901 ha (4,698 ac.) in 1900; this increased to 1,816 Japanese-run farms on 4,166 ha (99,254 ac.) of land by 1910 (Iyenaga 1921).

Fearing a Japanese takeover of the agricultural industry, anti-Japanese organizations like the Oriental Exclusion League—established by a coalition of labor unions in 1905—began to form across California. The four main organizations that formed the backbone of anti-Japanese propaganda were the Native Sons and Native Daughters of the Golden West, the American Legion, the California Federation of Labor, and the California State Grange (Daniels 1962). These organizations aimed to spread fear of the Japanese, popularizing terms such as “Yellow Peril” (Uyeda 1987). The newsletter of the Native Sons of the Golden West, first published in 1907, included at least one anti-Japanese article in every issue (Daniels 1962).

The fear campaigns of the anti-Japanese organizations were successful enough to give them significant influence over legislation at city, state, and even national levels. The Asiatic Exclusion League, mostly concerned with excluding Japanese and Koreans from the United States, successfully pressured the San Francisco Board of Education to force Korean and Japanese students to attend a segregated Oriental school (Waugh, Yamato, and Okamura 1988). Pressure from anti-Japanese groups in California led President Theodore Roosevelt to negotiate the Gentleman’s Agreement of 1907–1908 in which Japan agreed to stop issuing passports to laborers and the United States agreed to allow the immigration of laborers that had already been to America as well as parents, wives, and children of laborers already in the United States (Waugh, Yamato, and Okamura 1988).

The Gentleman’s Agreement did not help diminish the Japanese presence on the West Coast but instead encouraged the establishment of families and growing communities. Only 410 of 24,326 Japanese immigrants were female in 1900 (Waugh, Yamato, and Okamura 1988). In the first two decades of the 20th century over 20,000 Japanese women came to the United States (Ng 2002). By 1920 the Japanese population in the continental United States had grown to 111,010, with over sixty percent living in California (Daniels 1985; Waugh, Yamato, and Okamura 1988). In northern California, the highest concentration of Japanese lived in Fresno County with 5,732, San Francisco County with 5,358, and Alameda County with 5,221 (Waugh, Yamato, and Okamura 1988).
Alien Land Laws were passed in California in 1913 that took advantage of the fact that the Japanese and other Asians could not become citizens based on the Naturalization Act of 1798. The former prevented Japanese and any non-citizen from owning land and limited leases to “aliens” to three years. Many Japanese found loopholes around the Alien Land Laws by transferring the titles of their land to their American-born children and by incorporating their businesses in order to purchase land as a single entity. One agricultural sub-industry that, because of its long history, was largely able to work around the Alien Land Law was the nursery business.

The Japanese Nursery Industry in the Bay Area

The history of the Japanese flower business in the Bay Area goes back nearly as far as the beginning of Japanese history in the United States. Beginning in 1884, the Japanese nursery industry in Oakland was an important part of a thriving community in economic and political aspects as well as in cultural and familial ways. Japanese involvement in floriculture had influences far beyond the Japanese community and the Bay Area, affecting the flower industry across the nation. The Japanese were able to find a niche market and dominate it. As Gary Kawaguchi says of the Japanese in the nursery business: “They left their indelible stamps on the industry worldwide, Issei, men and women, had the farthest ranging vision of how the industry would grow, the greatest love of challenge and risk and the luck to start at the bottom floor” (Kawaguchi 1993:ix).

The flower industry in the San Francisco Bay Area began during the 1850s when successful prospectors and other nouveau riche had an excess of wealth and an eagerness to spend. Flowers were no longer luxury items but instead expected adornments in hotels and restaurants (Kawaguchi 1995). Flowers also played an important part in funerals, weddings, and births, rituals that spanned all classes of people. Ornamental plants also gained popularity over the years, increasing after the development of Golden Gate Park that was lauded by the San Francisco Chronicle as “the inspiration of the people toward what is beautiful in outdoor life” (Kawaguchi 1995:31). Also according to the San Francisco Chronicle, at the turn of the century San Franciscans spent more on flowers per capita than anywhere else in the U.S. (Kawaguchi 1995:31).

It was during the rise of flower popularity that the Domoto brothers first arrived in California from Japan. The first brother landed in San Francisco in November 1884 and three of his brothers soon followed (Kawaguchi 1993). The brothers were renting land in Oakland by 1885 and had built nurseries to grow chrysanthemums, carnations and garden plants and trees. The Domotos are credited for being the first in northern California to commercially produce a variety of different garden plants such as camellias, wisterias, azaleas, and lily bulbs imported from Japan (Yagasaki 1978). Their business continued to grow and, in 1892, the brothers bought 0.8 ha (2 ac.) in the Melrose district on Central Avenue and East 14th Street, possibly making them the first Japanese to own land in the United States (Kawaguchi 1993; Murase 2001). In the next few years the Domotos expanded their business, adding several new flower species to their production and buying the parcel of land next to their nursery.

The Domoto Nursery expanded with the growing popularity of ornamental plants and flowers in the Bay Area. The nursery grew again in 1902, this time to a larger site in the Oakland foothills on Krause Street. The new nursery increased production to 16 ha (40 ac.) and became the first large-scale Japanese nursery in the United States. The Domoto brothers’ success was encouraging to those they knew in Japan, and many friends and relatives eventually came to the United States to learn from them and follow in their footsteps. The brothers actively recruited workers from their home prefecture of Wakayama and the large number of Japanese...
nurserymen trained by the brothers earned their nursery the nickname “Domoto College,” (Kawaguchi 1993:14). The brothers encouraged their trainees to start their own businesses, which many did in the local area, creating a concentration of Japanese nurseries in Oakland and the greater East Bay. Eventually most of the large Bay Area nurseries were owned and operated by nurserymen trained at “Domoto College.”

The original Domoto Nursery was located not far from the High Street Tract. The first reference found to a nursery in our project area was a 1912 city directory listing for T. Katoh at 4501 Clement Street. By 1917 the Block Books show a greenhouse at this location and in 1920 T. Yoshioka operated a vegetable farm on the property. Within a few years numerous Japanese families operated nurseries in the area and did so until their forced relocation in 1942.

Most nurseries were concentrated in the East Bay, including Oakland, Berkeley, and Richmond and eventually expanding to San Leandro and San Lorenzo, and on the San Francisco Peninsula including San Mateo, Belmont, Redwood City, and Mountain View. One significant reason for this concentration was the East Bay climate, advertised in the 1870 Oakland City Directory as ideal for growing trees, shrubs, and bulbous roots (City Directory [Oakland] 1870). The cool breezes and fog of East Bay mornings partnered with afternoon warmth and sunshine made perfect conditions for growing roses (Slater 1997). Property values were also lower in the East Bay than in San Francisco. As the cut flower industry does not require the extensive acreage of agricultural industries, Japanese immigrants were able to buy small plots of land on city outskirts for relatively low prices. The concentration of nurseries in Oakland, Berkeley, and Richmond was also the result of easy access to markets. Transportation was relatively well developed in the East Bay so the growers located their nurseries in the affordable suburbs along railroad lines and the Key System, which provided streetcars, rail lines and buses for Oakland, Berkeley, Alameda, Richmond, El Cerrito, Emeryville, Albany, Piedmont, and San Leandro. Every morning the growers would transport their flowers from their nurseries in the East Bay along varying transit lines to ferries that would take them to San Francisco where they would sell to retailers.

At first the growers would sell outdoors. A spot on the corner of Kearny and Market streets in San Francisco gradually became an unofficial gathering place for growers and retailers to do business. The Japanese flower growers eventually organized and, in 1906, the California Flower Growers Association was formed with 42 charter members. The Association’s initial objective was to establish an indoor market site where Japanese, Italian, and Chinese flower growers could come to sell their products. After three years of searching a building was finally found at 31 Lick Place in an alley between Kearny and Montgomery, Sutter and Post streets (Kawaguchi 1993).

Italian and Chinese were also large players in the Bay Area’s cut flower industry, but production by Japanese growers steadily dominated production. In the 1930s it was estimated that Japanese flower growers produced $2 million annually compared to $700,000 to $800,000 by Italians and $200,000 to $300,000 by Chinese (Yagasaki 1982). In 1912 the California Flower Market incorporated with 54 Japanese flower growers as shareholders becoming one of the earliest corporations owned by Japanese in the United States (Murase 2001). In 1924 the flower market moved to a larger location at 5th and Howard streets, and later to a still a larger site on 6th and Brannan streets where it still operates as the San Francisco Flower Mart.

Though the center of the wholesale and retail flower business remained in San Francisco, nurseries continued to be concentrated in the East Bay. One event that increased the number of people, including growers, in the East Bay was the great San Francisco earthquake and fire of 1906. Immediately following the earthquake many Japanese found refuge in Japanese
churches, temples and nurseries in the East Bay (Kawaguchi 1993:23). The sturdily built East Bay nurseries did not suffer damage from the earthquake and even in the midst of San Francisco’s devastating crisis, the flower business continued as people bought flowers for funerals, hospital visits and to raise spirits.

The 1906 earthquake was one of many setbacks that the flower industry survived. Because of their role in rituals of celebration as well as tragedy, flowers were essential during all seasons of life. World War I and the influenza epidemic that immediately followed saw a spike in flower sales and prices. The Japanese flower growers enjoyed continued success in the years after the war, producing 70 percent of the major greenhouse flowers and chrysanthemums in Northern California in 1929 (Kawaguchi 1993). Japanese nurseries were at the height of their success when the stock market crashed on October 28, 1929.

The Great Depression affected the entire nation, including Japanese flower growers. However, the flower growers were more fortunate than many other Japanese businessmen, especially farmers. Because the Japanese nursery industry had been established so long ago a great number of flower growers owned land they had purchased before the Alien Land Laws. Japanese farmers, on the other hand, more frequently leased land and were more susceptible to debt. Overall, the flower growers were less indebted because they relied less on credit and leases. But the ripple effects of the stock market crash reached them as well and the depression years were full of frugality and lean living that not all were able to sustain.

The flower industry along with the nation’s economy struggled with recovery in the 1930s as business slowly got back to normal. The completion of the Bay Bridge in 1936 made it more efficient for the East Bay growers to transport and sell their flowers in San Francisco. The industry also experienced a small boom as a result of the Golden Gate International Exposition in 1939.

Business was steadily improving when Japanese flower growers—along with all people of Japanese descent in the U.S.—had their lives turned upside down by the aftermath of the bombing of Pearl Harbor in December 1941. In the months that followed the nation was taken over by panic and hysteria. This resulted in President Roosevelt’s Executive Order 9066 that allowed for the forceful removal and internment of over 110,000 people of Japanese descent, two thirds of whom were U.S. citizens.

People were first rounded up into assembly centers before they were transferred to one of ten relocation camps in seven states. Evacuees were given between two weeks to only a few days to settle their businesses, pack only what they could carry, and leave their homes for an unknown destination for an unknown amount of time. Nursery owners frantically tried to find either buyers or caretakers for their businesses, losing substantial amounts of money as they sold greenhouses, equipment, and land at staggeringly low prices (Taylor 1993:55). Many flower growers who wanted to keep their businesses entered into bad contracts or leased their nurseries to untrustworthy caretakers. Oftentimes these caretakers would neglect their obligations, leaving the nurseries in disrepair, crops unsalvageable, and equipment and personal property missing (Kawaguchi 1993:58). Many nurseries, however, did survive the internment of their owners because of the generous efforts of neighbors, friends, and fellow nursery owners who maintained the nurseries for the Japanese growers while they were interned.

The relocation camps stayed in operation throughout the war, most closing in 1945. As the camps closed the internees had to begin the difficult task of returning to the West Coast. Internees who did not own property had no homes to return to, and found temporary shelter at churches and temples. Many returned to find their property vandalized or missing. The
Federal Reserve Bank estimated that Japanese American losses in the West Coast and Hawaii amounted to $400 million (Taylor 1993). For the flower growers of the East Bay the future looked bleak but not impossible. In a 1945 report, Oscar F. Hoffman, the Topaz Community Analyst, concluded that the flower growers had a better chance than any other occupational group in reestablishing their businesses upon their return to the West Coast (Hoffman 1945).

The fact that 75 percent of the flower growers owned their own property gave them a huge advantage over many other business owners. Most had houses on their nursery properties and did not have to find somewhere to live once they returned. The growers were also returning to a market that had felt their absence and the demand for flowers was greatly exceeding the supply. There were also many problems for flower growers in reestablishing their businesses: damaged greenhouses and equipment that had to be rebuilt or replaced, nurseries that had not been restocked with plants and, therefore, not profitable until stocks were built back up, and the lack of reliable labor. The original nursery owners were all Issei, first generation immigrants who were mostly into their 50s by the time the war was over. The period of reestablishment was a time of rebuilding in a new market as well as a time during which the reigns of the industry were gradually being passed down to the American-born Nisei generation. After the war the Nisei controlled not just the flower industry but all Japanese economic activity in California (Yagasaki 1982).

Under Nisei management the flower industry successfully recovered after the war. Advances in shipping, greenhouse technology, and floriculture techniques contributed to the industry’s success and aided in continued expansion and growth. The Bay Area remained a major center of the industry with Alameda County reaching 10.11 million square feet of greenhouses in 1980 (Ferris 1997). It was not until the 1990s that the once booming Bay Area flower industry began to gradually wilt. As the Bay Area population grew and suburban housing began its sprawl the nurseries once on the outskirts of cities became unwanted neighbors in the middle of suburban communities. To escape the many problems of operating in highly populated areas flower growers began moving south, all the way into the Monterey Bay peninsula. The East Bay eventually lost its position as the focal point of Northern California floriculture.

The Bay Area and California flower industry faced an even more serious problem beginning in 1991 with the passage of the Andean Trade Preference Act. As part of the “war on drugs” the U.S. attempted to reduce the amount of cocaine produced in South America by encouraging Colombian, Peruvian, Bolivian and Ecuadorian farmers to replace cocaine with flowers and import them to the U.S. tariff-free (Slater 1997). The South American growers, already at an advantage with lower labor costs, lower operation costs, and the perfect climate for growing roses, could now export to America free of charge. American flower growers could not compete with the bigger, cheaper South American flowers.

Northern California nurseries began rapidly closing and, by 1995, greenhouse footage in Alameda County had dropped to 1.95 million with only 30 or 35 nurseries still in operation (Ferris 1997). In 2009 only a little over a million square feet were under glass in Alameda County (Bray 2010). Demolition on the last of the Japanese nurseries in Richmond began in March 2011. The 5.7 ha (14 ac.) of the Sakai, Oishi, and Maida-Endo nurseries will soon become the 150-home Miraflores housing development (Tam 2011). As a tribute to the past two greenhouses, two homes, and a water tower are being preserved and an interpretive exhibit will be erected to explain their significance. Preserving the once-lush greenhouses of the Japanese nurseries as historic structures validates their importance to the development of the flower industry in the Bay Area but also sadly signifies the end of a very long and influential history.
CHAPTER 3: RESEARCH DESIGN

The TP that was prepared to guide evaluations of archaeological resources in the High Street APE assumed that the undertaking had a federal nexus and was thus subject to compliance with Section 106 of the National Historic Preservation Act and its implementing regulations (36 CFR Part 800). Under those circumstances, the legal significance of resources is determined by applying the NRHP Criteria for Evaluation described at 36 CFR 60.4. When it was established that the project was not subject to these regulations, the criteria to be applied during this investigation were those of the CRHR, found at Section 5024.1 of the California Public Resources Code. In practice, the two sets of criteria are virtually identical and the evaluation process described in the TP (Koenig and Mc Ilroy 2002) remained relevant.

While archaeological resources may be found eligible under any criterion, the significance of these properties is usually assessed in terms of their research importance as determined by applying Criterion 4 of the CRHR. This criterion stresses the importance of the information contained in an archaeological site rather than its intrinsic value as a surviving example of a type or its historical association with an important person or event. To assess whether a property is likely to contain important information, the investigator must define the important questions that may be addressed with the kind of data a property is likely to contain. That entails establishing a general theoretical orientation, identifying important research themes relevant to the types of resources that may be encountered, defining the data those resources need to contain, and establishing the condition or integrity necessary for the resource to yield those important insights.

FORMATION PROCESSES & INTEGRITY

It is essential to understand the processes by which cultural and natural strata are formed in order to interpret archaeological data and to evaluate their importance. When working in complex urban contexts, it is especially important to understand archaeological deposits in terms of the events that created them, not merely through the artifacts they contain. The excavation and recording system developed by Edward Harris (1979) aids in interpreting these events. Under this system, archaeologists must take note not only of solid features (such as walls) and negative features (such as pits), but also of contiguous interfaces that are created where stratigraphic units come into contact with one another. Thus, Harris recognizes layer interfaces, feature interfaces, and period interfaces—the latter defined as “a surface composed of a number of layer and feature interfaces” (1979:47). Writing at an earlier era, Leonard Wooley provided another definition of this concept: “the sum total of the ground surfaces which were ground levels in use at one and the same time” (1961:24).

Archaeological deposits reflect either periods of continuity or intervals of transition in site occupation or use. Continuous deposits are archaeological layers or living surfaces that become recognizable and distinct when buried by natural strata (i.e., flood silt, ash) or cultural strata (i.e., fill, roadway, building). Continuous deposits can form over periods of thousands of years, as on some California prehistoric sites, or in just a few years, as in the sequence of fire, flood, and fill found in Sacramento. It is a transition, natural or cultural, that results in a layer interface and the sealing of a continuous deposit into an archaeological layer. A process of continuous discard produces “sheet refuse” or gradually fills hollows and negative features. Because they accumulate gradually, these strata are highly susceptible to depositional and post-depositional disturbance. Archaeologists employ assemblages recovered from stratified,
continuous archaeological layers to examine a variety of research problems concerning changes through time.

Archaeological strata formed during incidents of transition accumulate very quickly, often through a single depositional event in response to an abrupt change in the nature of site occupation and use. Activities such as the creation of a new feature interface (the removal of strata: hole digging) or the deposition of materials within a previously existing feature interface (the addition of strata: hole filling) often mark intervals of transition. Such deposits are more likely to retain their integrity than are continuous deposits and, therefore, possess greater visibility and focus in the archaeological record. In addition, deposits formed during intervals of transition may often be associated through historical research with specific households.

In urban areas, transitional feature interfaces and the strata that create them are often the result of changes on two levels: (1) those that result from the new use of a particular parcel due to the presence of a different commercial enterprise, occupant, or owner, or from modifications made by a continuing one; and (2) those produced by widespread responses to either natural disaster, such as floods or fires, or to municipal regulations governing sanitation practices, water delivery and storage, or street and lot improvements. More broadly, the latter transitions may be viewed as the movement by City government away from unplanned growth and development toward urban planning.

Integrity refers to the degree to which a property has retained qualities that it possessed during its period of significance. The NRHP recognizes seven types of integrity: location, design, setting, materials, workmanship, feeling, and association. These are also applicable to CRHR evaluations. Unlike built resources that must visually evoke an event, person, or process, archaeological properties do not need to meet every one of the seven aspects of integrity to be judged eligible for the CRHR. They simply need to be “sufficiently intact to yield the expected important information” (NPS 1991:23).

THEORETICAL ORIENTATION

This research design adopts a contextual approach to the analysis properties. Contextual archaeology emphasizes the specific historical, social, and cultural context of behavior rather than the supposed universal influences sought by the practitioners of processual archaeology. This approach parallels the trend in the social sciences in general toward problems of “contextuality, the meaning of social life to those who enact it, and the explanation of exception and indeterminants rather than the regularities in phenomena observed” (Marcus and Fischer 1986:8). Structuralism, symbolism, critical theory, and “meaning” (Leone 1986) are stressed in interpretation. Contextualists also recognize the active role of both material culture and the archaeologist in the creation of the past. Some of the broad concepts that support the framework of this research are Modernism, Victorianism, and Working-class Culture.

The first of these is concerned with the processes by which people from traditional, nonindustrial cultures—both immigrant and native-born—adapted to life in an industrial society (Gutman 1977). Victorianism works together with modernism, as it is said to have been a “homogenizing force” (Hardesty 1980) upon the cultures of immigrants and native-born working class alike, which attempted to replace traditional mores with modern values and patterns of behavior better suited to an industrial society. Archaeological research is in a unique position to measure the influence of these two factions: the relative pervasiveness of Victorianism and the degree of resistance to the values of the emerging industrial society of a distinctive working-class culture.
RESEARCH THEMES

This research design details a series of research themes and relevant questions that might be addressed by the archaeological property types that the preceding historical, archival, and archaeological research had identified. Summarized below are some of the applicable research themes and questions raised for these property types.

The research themes outlined below are currently being studied by historical archaeologists working in urban Bay Area projects. These broad themes are applicable to most urban areas, given an adequate archaeological and documentary record. Some of the questions require the analysis of only one deposit; others must be viewed at the parcel, block, neighborhood, city, or even inter-city level. While the questions are phrased to address a resource’s significance, they can also be viewed as avenues to follow out in formulating site interpretation.

The research questions were phrased so that they could be used to evaluate the importance of archaeological deposits as they were encountered in the field. Within a contextual approach, questions have built upon each other as new data are gathered from the ground, from the archives, from maps and photographs, and from oral-history informants. The answers, when woven together, will provide a richer human history of Oakland and promote a deeper understanding of the middle- and working class people who once lived there.

Theme A: Consumer Behavior/Strategies

Question 1: Does this resource enable us to describe the consumer practices and disposal behavior of a household or business with specific social, occupational, economic, and/or ethnic characteristics?

This is one of the core questions of the research design. It identifies archaeological deposits created by the disposal of refuse. As in the present day, refuse includes the remains of food preparation and consumption (containers, leftovers, bones, seeds, spoiled food, etc.), as well as broken and unwanted household paraphernalia. Archaeologists study refuse deposits associated with specific households to understand the way of life of people in the past at a level that could never be achieved through the written record: What did they eat? How did they allocate their money? Where did they shop? How was food prepared and served? Was dining formal or informal? How were they influenced by fashion, mass marketing, and/or social movements? What household items did they consider disposable or unwanted? What medicines did they use and how do they correlate with gender, age, or occupation-specific epidemiology?

Archaeological studies within the project area should attempt to elucidate the material correlates of working-class culture as this might have varied by ethnicity and over time. Given the documented resistance to and modification or acceptance of middle-class values and material culture on the part of urban working people of various ethnicities, the consumer and disposal practices of Oakland residents would provide a wealth of comparative data from a wide range of households that could make important contributions to the understanding of this important issue. Did households purchase new or used goods? Did they shop in junk stores or from mail-order catalogs? Were dwellings decorated with items that were currently fashionable among middle-class consumers or with outmoded items? Was cost, quality, fashion, or efficiency the prime influence on consumer choices?
Question 2: Does this resource add to our knowledge of adaptive behavior in urban settings associated with the acquisition and consumption of foodstuffs or the organization and use of space?

Although limited by factors of cost and availability, 19th-century urban dwellers had potentially good access to a variety of commercially supplied foodstuffs. The choices made by individual households in these and other purchasing decisions can be reconstructed through archaeology. The contribution to the urban diet through the efforts of individual householders can help gauge the level of reliance on commercial versus self-procured food resources.

While the yards of the merchant class may have been used more for aesthetic than economic purposes (Mrozowski 1987), those of artisans were sometimes used to produce food for the family (e.g., Praetzellis and Praetzellis 1989, 1992). Pollen studies can often contribute to this work on a parcel level by providing evidence of vegetable gardens (Kelso and Beaudry 1990); whereas the discovery of the remains of noncommercially taken fish or evidence of animal husbandry could allow statements to be made about the food-acquisition practices of individual households. These approaches could contribute data to address Theme B by examining the data on a neighborhood level.

How did working-class households of Oakland balance their economic strategies? Did all available family members work outside the home or did some members contribute to the family livelihood by working at home (e.g., taking in laundry) or through backyard agriculture? How did households use their yard space? Did this vary by ethnicity or occupation? What can be learned about the daily diet from the assemblages recovered from various backlots? Did residents fish in the nearby San Francisco Bay or hunt? Were any animals butchered on site? Did the use of backyards change through time? How do the patterns observed in the High Street study area compare to those identified in other parts of Oakland, San Francisco, or Sacramento for the same time period?

Question 3: Does this resource provide information on changing standards of living as a result of the Great Depression? Does it provide information on strategies used by households to mitigate the effects of the Depression? These strategies might include drawing on family or ethnic networks, curation of material culture, and changing consumption patterns.

The Great Depression saw a massive increase in poverty and homelessness. In 1933 a conservative estimate of the number of homeless people in the U.S. was 1.5 million (Kusmer 2003:194). Those who were typically on the edge of homelessness went over the edge, but so did many white-collar professionals who had hitherto been safe. Financially strapped municipalities were unable to cope with the increase in people seeking relief work or shelter. Oakland was no exception. In 1932 more than 14,000 unemployed people applied for relief work in a program that only had openings for 250 (Rhomberg 2004:75). In the winter of 1932-33 200 homeless men set up a camp by the waterfront with shelter consisting of unused sections of sewer pipe. This encampment “Pipe City” was the largest homeless encampment in the Bay Area (Curl 2009:169; Rhomberg 2004:75). The Depression caused a sea-change in U.S. society and had a deep impact on the material culture of U.S. life. For many Americans, the Depression was characterized by mobility, loss of community, and a transient lifestyle.

There has been little published archaeological study of Depression-Era urban residential sites, although there has been work on rural sites such as CCC camps as well as some informal camps. For example, Bryce Barker and Lara Lamb studied a historical documented 1932 camp
of unemployed men in Toowoomba, Australia, examining efforts within the camp to maintain a semblance of respectability and a status as “deserving poor” (Barker and Lamb 2009).

The ASC has conducted archaeological data recovery at two Depression-era residential sites. One is a rural site, the residence of the lake tender for the Caples Lake reservoir (CA-ALP-532H [Walker 2009a]). The other is working class household at 20[35] Perry Street in San Francisco (Praetzellis 2007). Comparison of these two sites by Walker (2009a) showed surprisingly little difference in the material culture even though one was a very isolated cabin in the Sierra Nevada and the other an urban residence. This raised the question of whether the Spartan material culture of the lake tender was a general feature of working-class life during this period rather than being simply a product of isolation.

In addition to the archaeological sites, another potential comparative dataset is the USDA surveys of family expenditure in the 1930s and 1940s (Monroe et al. 1939, 1941; USDA 1944, 1948, 1949). The categories used in these studies have been used in archaeological analysis of three Depression-era farm sites in South Carolina (Crass and Brooks 1995).

Data Requirements:

- Archaeological: feature and/or layer interfaces
- Historical: associated with specific households
- Oral history: interviews with representatives of various ethnic groups to establish relevance of foodways and yard use in traditional behavior
- Faunal remains: economic scaling and ranking of butchering cuts (Lyman 1987; Schulz and Gust 1983); frequencies of types—domestic/wild; presence/absence of types
- Botanical remains: frequencies of types—domestic/wild; presence/absence of types
- Ceramic and glass function: MNI frequency/proportion
- Social science: explicit social, economic, and status categories
- Household demography: size, composition, life-course
- Documentary: Mail-order catalogs, advertisements, commercial inventories, merchants’ and householders’ accounts, family expenditure surveys.

Theme B: Ethnicity/Urban Subcultures

Question 1: Does this resource reflect the rise or relative influence of Victorianism as a class-based ideology? Does this resource reflect resistance to Victorian or post-Victorian tastes and mores?

As a multifaceted set of values that influenced the lives of its predominantly middle-class participants in many ways, Victorianism (and post-Victorianism) found its way into artifacts, behavioral patterns, and specific historical events and processes on many levels—from municipal public works, to children’s toys and decorations in ordinary families’ homes, to archaeological site structure and content (Praetzellis 1991).

Archaeological deposits associated with late-19th-century households can be examined for evidence of their respective degrees of participation in or rejection of Victorian and post-Victorian patterns of domestic behavior. In particular, artifacts associated with formal entertaining can be examined for evidence that these practices became more important through time. The archaeological remains of landscape values and disposal practices of individual
households can be viewed within their backlots. The survival of ethnic foodways and other practices can be studied in deposits associated with Oakland’s various ethnic groups, who lived in close proximity to each other at this time.

Question 2: Can this resource help us to understand the dynamics of cultural pluralism and social stratification during the 19th and early-20th centuries? Does this resource possess material remains that could elucidate the relative influences of economic distinctions and the development of mass production and world trade on the material manifestations (i.e., artifacts) of ethnic and subcultural distinctions?

To see the variation (or lack thereof) requires tying together the ceramic, faunal remains, and other artifact classes by means of a contextual analysis. Considering the major artifact classes individually, combining these data to establish an archaeologically derived spectrum of Oakland lifeways, then checking for inter-block and intra-block similarities or differences, would illustrate how study-area households were like others in northern California (e.g., San Francisco, Sacramento, Los Angeles), in the West (Phoenix, San Diego, Seattle), in the Midwest, the South, or in the East (Boston, New York). It is also a way to see whether the city’s public facade was paralleled by a similar unifying kinship through objects—household furnishings, utensils, daily foods—kept and used inside family homes.

Question 3: does this resource possess artifacts and/or faunal remains that could be used to elucidate the role of symbols in defining and maintaining boundaries between groups?

Scholars have suggested for some time that archaeologists could make a contribution to the study of ethnic-boundary maintenance. Social boundaries are marked by material symbols of ethnic differences—style-bearing artifacts. The historic record of the Asian communities of the West, for example, shows that style was expressed through differences in landscape, public display, dress, and language. Although the latter two characteristics have left little or nothing for the historical archaeologist to work with, historical studies of landscape and ethnically specific public display have been rewarding. The varied ethnicities of Oakland households may be expressed in material form on the landscape as gardens, fences, and in other forms of public display. This theme builds on an understanding of the data analyzed for Theme A.

Data Requirements:
- Archaeological: period interface composed of feature and layer interfaces; many households
- Historical: specific historical associations for each stratum
- Documentary: understanding of ethnic foodways, style-bearing artifacts, etiquette books, fashion magazines
- Archival: ethnic identification, historical background
- Oral history: interviews with representatives of various ethnic groups to explore the relevance of traditional material culture, foodways, and community life
- Ceramic, glass, metal containers: MNI frequency/proportion
- Faunal Remains: frequencies of types/domesticates/wild; presence/absence of types; butchering cuts
- Botanical remains: frequencies of types—domestic/wild; presence/absence of types
Theme C: Household Developmental Cycles by Thad Van Beuren

Question 1: Does this resource possess features created at different periods in the life cycle of a family or other household that elucidate changes in that residential unit’s consumer practices, intergenerational dynamics, and the negotiation of familial or household economic priorities?

Protracted occupation of a residence by the same family or household provides an opportunity to explore its evolution and internal dynamics from a diachronic perspective. Hardesty (1988:15) has defined households as a family or group of unrelated people “sharing domestic activities such as consumption and production.” As discrete social and economic units, households reflect patterns of behavior that are a microcosm of broader societal interactions (Deetz 1982:724). Domestic units comprised of families are of particular interest because their developmental cycle is reflected in the material record.

All families change over time. New members are added through birth and marriage, while others are removed by death, emigration, and divorce. In the past, family units often consisted of three or more generations housed in a single dwelling. Changes in the size, age composition, health, and economic contributions of family members all profoundly affected their internal dynamics and relations with the outside world. Illness or death among primary members often significantly impacted the household’s economic circumstances, while the addition of children and elderly members required accommodation and adaptation. As the composition and circumstances of families changed, so did their use of material goods and the material world. Yet, despite the centrality of family life course in the formation of the archaeological record at domestic occupation sites, archaeologists have only recently devoted specific attention to that topic.

The developmental cycle of families have been widely recognized by anthropologists for some time. A volume edited by Goody (1971) pioneered initial investigations on the topic when it was first published in the late 1950s. Those initial efforts considered each phase of the family’s life cycle from the perspective of internal dynamics and outside pressures. Goody (1972) later focused on the evolution of families as units of production, reproduction, and consumption.

Historical archaeologists have taken an interest in this topic for several decades. An early example is Mrozowski’s (1984) analysis of the ratios of producers to consumers within families, birth spacing, and larger external kin networks that mediated the economic activities of households in Newport, Rhode Island. He also discussed how gender roles and productive labor were defined and valued differently (Mrozowski 1984:43). The ascension of industrial capitalism in the late 19th century restructured gender and class relations, with consequences that strongly impacted household dynamics.

Feminist perspectives have shaped much of the discourse concerning household dynamics. Beaudry observed that not all household members contribute to the household economy in the same way, and that the presence of some goods in the household context have more to do with production than with consumption. It is important, therefore, to consider income strategies (e.g., domestic production for outside sale vs. domestic production for internal household consumption and survival; piecework and outwork; taking in boarders; etc.) and the overall household economy, including contributions made by women, servants, slaves, boarders and other inmates, and, potentially, by children [Beaudry 1999:119].
The competing ideologies of the cult of domesticity, the domestic reform movement, and equal rights activists contributed to changes in both urban and rural households of the period (Giele 1995). The cult of domesticity postulated separate public and private spheres of activity, relegating women to the home (Wall 1994, 1999). That notion contributed to the gradual segregation of workplaces and living quarters that were previously comingled (Spain 1992:124). Houses and yards became predominantly private spaces, with order and hierarchy stressed in the ideal home. Even within residence, spaces were divided into public and private spheres. The use of ceramics in those different realms has been considered by Yentsch (1991), Wall (1991, 1994), and others. However, others have cautioned against rigidly dualistic models of behavior (Wurst 2003:226–227).

The domestic reform movement countered the separate spheres philosophy by professionalizing domestic work, as well as redefining women's roles in the workplace (Spencer-Wood 1996, 2004). The intent was to increase the status and economic independence of women by carving out niches in accord with the natural proclivities of women for child rearing, education, and other professions. The equal rights movement, in contrast, stood in direct opposition to domesticity. The cult of domesticity was considered oppressive and activists sought reform in the public arena. Equal rights proponents sought liberation from dependence on men, as well as political equality (suffrage rights). As Rotman (2005:5) noted, “the adoption and implementation of each of these ideologies (and others), varied, however, according to time and space, financial and social circumstances, and the abilities and desires of human agents.”

Against that social backdrop, evidence of the negotiation of gender roles played out in individual residences through the developmental cycles of families. New generations or new marriage partners adopted ideas and practices that sometimes differed from earlier family practices. Those changes are typically analyzed at two scales. Architectural and landscape features reveal not only the outward appearance a family presents to the world, but also how daily activities are organized within the domicile (Glassie 1975; McMurry 1988). Houses are most commonly renovated to accommodate new residents or express changing ideals associated with household transitions (e.g., succession events).

House renovations have been linked to transitions in property ownership through inheritance by Brown (1987). Expanding on that work, Wheeler (2000) not only studied architectural refurbishment linked to changes in female household heads; she was also able to associate sheet refuse deposits with those episodes of reconstruction, demonstrating the coincident replacement of ceramic assemblages. However, Barber (1994:75) observed that the house more commonly “becomes the conservative factor, encouraging inhabitants to continue the types of organizations of activities in a way similar to those current when the house was built.” Within the working class neighborhood examined here, most homes were modest owner-built residences that emphasized practicality and economy over stylistic considerations.

Question 2: Does this resource possess artifacts and/or faunal remains from closely dated features that can be used to elucidate the changing roles of family members during the life cycle of that household?

While archaeological investigations of historic sites routinely attempt to establish periods of deposition for recovered features and associate them with the households responsible for producing them, relatively little attention has focused explicit attention on the analysis of transitional events in their own right. Inheritance, marriage, divorce, and infirmity can each lead to succession events that instigate dramatic changes in the archaeological record.
Other types of events such as the arrival of children may also produce distinct archaeological assemblages associated with particular stages of family life.

Several studies have focused on assemblages associated with families facing particular events in their life course. Transitional events such as the inheritance sometimes precipitated sweeping changes in amenities, furnishings, and artifacts within households. One example was analyzed by Van Bueren (2004) on the Carnduff farm property in southeastern San Mateo County. In that case, a shallow refuse deposit on the grounds of the farm with a TPQ of 1915 was closely tied to the death of the matriarch of the family in 1917. The deposit revealed changes in priorities and tastes, with many older heirloom ceramics discarded, an unusually high proportion of medicinal containers likely reflecting use by the deceased mother, evidence of home renovations, and a relaxation of thrifty spending practices apparent during the mother’s reign as the head of household. Even deposits with less temporal specificity can convey transitional events within households. For example, Groover (2003, 2004) explored deposits that reveal transitions at the Gibbs Farmstead in Tennessee.

The role of a household’s developmental cycle on consumer choices has also been investigated. Miller and Hurry (1983) studied the initial household purchases of durable goods and furnishings made by newly married couples, for example. Probate inventories have long been used to understand how families accumulated and passed along goods at the end of their lives (e.g., Carson 1990; Friedlander 1991). Others have focused on families at specific stages of development. A recent example is Rotman’s (2005) comparison of assemblages and houses associated with a newlywed family, a struggling family in its child rearing years, and a household occupied by two elderly upper class spinsters. Another example includes assemblages associated with an African-American woman in Mobile, Alabama who turned to midwifery to support herself and her children following the death of her husband in 1884 (Wilkie 2003). These are just a few of many recent studies that have begun to tackle the issue of family life course and its influence on the archaeological record.

Data Requirements:

- **Archaeological:** Closely dated features reflecting different periods in the occupation of a site by the same family or household; assemblages that reflect transitions or continuities in familial relations, ideologies, and consumption patterns over time.

- **Historical:** Specific historical associations for each feature/stratum.

- **Documentary:** Understanding of the family or household’s historical context including class, ethnicity, gender composition, life course, religious and fraternal affiliations, ideological leanings, foodways, family relationships, inheritance pattern, and other relevant details. Sanborn maps and photographs showing the architectural and landscape features present at different periods of time.

- **Oral History:** Interviews with members of the family or household, and perspectives offered by neighbors.

- **Artifacts:** MNI frequency/proportion within specific features/contexts.

- **Faunal and Botanical Remains:** Frequencies of types/domesticates/wild; presence/absence of types; relative prices and butchering patterns for meat cuts.
CHAPTER 4: CITY OF OAKLAND BLOCK 2241

ARCHAEOLOGICAL TESTING SUMMARY

Archaeologists carried out open-area excavations in two phases coinciding with construction activities. The project area is both under the elevated freeway and beneath the southbound onramp (Figure 4.1). During both phases the project area was cleared mechanically. Historic disturbed layers were removed to expose the tops of features.

Phase 1

The initial phase of archaeological investigation in June 2008 concentrated on the sensitive portion of the new right of way (ROW) acquired along the west side of Oakport Street. This phase began when control of the new ROW for the project was transferred to Caltrans. Prior to that transfer, the front of the Ameron building was first cut back to the new edge of the ROW. That included removal of the building foundation, slab, and exterior paving present within the new ROW. A USA underground alert was then activated, and safety considerations were reviewed. No buried utilities other than a new water line were identified in the planned excavation area. Hazardous waste assessments carried out for the project identified no issues in the new ROW and thus, work was carried out using standard Caltrans safety procedures.

An archaeological crew composed of Caltrans and ASC staff was assembled to carry out the work in June 2008 under the direction of Caltrans archaeologist Thad Van Bueren. K-rail was installed along the west side of Oakport Street to protect the crew working below grade in the archaeologically sensitive area adjacent to this busy street. Security for the work area was provided by the installation of a six-foot high chain link fence and locked gates. Provisions were also made to cover any exposed archaeological features with steel trench plates at night, if required. A tailgate safety meeting was convened the first morning of the fieldwork to review safety considerations and ensure safe practices, especially important since modification of the Ameron building was still underway.

The sensitive portion of the new ROW was mechanically stripped with a backhoe equipped with a smooth bucket. Although sensitivity predications highlighted the potential for archaeological features in certain specific locations, the whereabouts of other features could not be accurately anticipated. For that reason, the entire sensitive area was systematically explored. Work started at the north end of the sensitive portion of the new ROW and continued south. Prior investigation under the adjacent raised freeway revealed that the historic land surface was buried under a massive and uniform landfill layer two to three feet thick (Mc Ilroy et al. 2002). Foundation trenches for the new front of the Ameron building confirmed the presence and depth of that modern fill in the area where archaeological work was planned.

Mechanical excavation proceeded rapidly down through the fill until the excavation approached the contact with the original historic ground surface. As the work neared that depth, excavation continued in a more cautious manner. Attention focused on identifying any former living surfaces and closely-dated sheet refuse layers such (e.g., fill from the 1898 explosion) that might be superimposed on the original ground surface, as well as historic cuts penetrating down into the underlying Holocene alluvial deposit (e.g., privies, wells, and refuse pits).

The gross stratigraphy of the investigated area was uniform, with the uppermost modern fill varying from 2.3 feet in depth in the north to 1.5 feet in the south. The fill was found to postdate 1941 based on the TPQs of features buried beneath it. It consists of medium reddish
Figure 4.1. New Construction Drawing and Archaeological Sensitive Area
brown silty clay containing subangular pebbles and virtually no artifacts. Phase 1 fieldwork identified a total of 11 buried archaeological features (features 1 through 11) capped and thus effectively sealed by the uppermost landfill and either cut into or superimposed on the surface of the underlying and visually distinct layer of dark brown silty clay (Context 105). Figure 4.2 depicts the locations of these buried features, as well as the features found subsequently during Phase 2, described below.

Deeper excavation of two concrete vaults, designated together as Feature 11, revealed that Context 105 was 3 feet thick. McIlroy et al. (2002:28) refer to this soil layer as Stratum IV and consider it a “naturally deposited alluvium of the Historic Period.” This layer likely represents the massive sedimentation of the San Francisco Bay resulting from hydraulic mining activities in the Sierra Nevada foothills in the period before that practice was banned in 1884 by the outcome of the Sawyer decision (JRP and Caltrans 2000:48).

Context 105 in turn caps an early Holocene deposit of olive brown silty clay that represents middle to late Holocene alluvium deposited as the San Francisco Bay and its surrounding marshlands developed. That Holocene alluvium has a thickness exceeding three feet. The southernmost concrete vault in the complex designated as Feature 11 cuts down 2 feet into this Holocene deposit for a total depth of 7 feet below the modern ground surface.

Table 4.1 lists the 11 features discovered and assessed during the Phase 1 fieldwork. The six sampled features consisted of filled pit features and a shallow trench filled with refuse. Half of each feature was initially sampled by hand according to stratigraphic layer. Four of the sampled features were sufficiently intact and contained closely dated material of sufficient quantity and variety to justify determinations that they were CRHR-eligible resources. Features 3 and 4 did not meet that threshold and sampled materials were thus discarded. The remaining portions of the four eligible features were then sampled to recover their important data.

Phase 2

Phase 2 of the project was excavated in September 2010. This area was within the historic ROW both under the elevated freeway and beneath the southbound onramp adjacent to and east of the Phase 1 area (see Figure 4.1). This phase began as soon as the new alignment of Oakport Street was completed with Michael Meyer of the ASC as field director and Ben Harris, Caltrans archaeologist. The Phase 2 archaeologically sensitive area (ASA) was protected with concrete K-rail along Oakport Street and 6-foot fence panels around the entire ASA. Once traffic had been switched to the new alignment of Oakport Street the asphalt surface and most of the base rock was removed prior to clearing. A gasoline line under the former street was removed prior to any archaeological work.

The Phase 2 area had been severely disturbed by underground utilities and roadway construction. There were several underground utilities running through the Phase 2 ASA including a storm sewer beneath the sidewalk that separated Phase 2 from Phase 1. The soil conditions in Phase 2 were markedly different than those encountered in Phase 1. During the original construction of Oakport Street most of the ground surface had been graded away. The asphalt and base rock sat on about 1 foot of clean light brown sand overlying alternating layers of sand and clay to about 30 inches below the surface. Where the ASA continued beneath the freeway, trench cuts for the bent footings had disturbed at least 5 feet to each side of the bent columns.

Within the bays between freeway bents the historic ground surface was more intact. There was typically about 1 foot of redeposited soils from freeway construction. Brick footings
Figure 4.2. Archaeological Site Plan

Final ASA
2010 investigation
2008 investigation
Concrete vault
Features
1912 Sanborn
1925 Sanborn

Clement Street
0 25 50 ft.
(features 21 and 22) were found associated with buildings at 4425 Clement. Excavation began within the bay between existing bent rows 4 and 5. The excavation extended to the builders’ trench fill for the bents. The historic ground surface between the bents was not as disturbed as under the street. A total of six features (features 20 through 25) were identified during the Phase 2 fieldwork (see Figure 4.1 above).

Table 4.2 lists the six Phase 2 features. They consisted of three filled pit features, a privy, and two brick footings. Half of each hollow feature was initially sampled by hand according to stratigraphic layer; they were sufficiently intact and contained closely dated material of sufficient quantity and variety to justify determinations that they were CRHR-eligible resources. The remaining portions of those four eligible features were then sampled to recover their important data.

Mapping

The excavation area, archaeological features, and modern landmarks discovered during Phase 1 were mapped with Global Positioning System (GPS) equipment. GPS files were later corrected to a precision generally less than 1 foot accuracy. Plans and photographs were made for all sampled features except the posthole designated as Feature 10. A site record was prepared to document the locations of discovered features after fieldwork was complete. That record was assigned the number P-01-10921. During Phase 2 the archaeological features, other landmarks, and the ASA boundary were mapped with a total station for precise positioning.
The area that would later be designated as Oakland Block 2241 is shown on a map in the 1878 Thompson and West Atlas as the H. Robinson Tract (Figure 2.1 above). It was first used by the Pacific Cordage Company in the 1870s, followed by mixed residential and commercial uses starting in 1880 and gaining momentum by the 1890s. The archaeologically sensitive portion of the project area was converted to residences by the late 1890s. While specific lot histories are detailed below in Chapter 6, a noteworthy finding of this research involves the patterns of immigration over time. During initial settlement many related people purchased lots or resided in rental housing on the block, forming a closely-knit social aggregate. Then, in the period between the two world wars, Japanese immigrants came to comprise another significant population on Block 2241, as well as in the surrounding neighborhood.

Following the devastating 1898 explosion that destroyed most of the housing on Block 2241, many houses were rebuilt, as a 1912 Sanborn Company map reveals (Figure 2.4 above). A bird’s eye view of the Melrose neighborhood shows dense urban development throughout the surrounding area (Figure 4.3). While most of this block remained residential until the onset of the Great Depression, stables were converted to garages or secondary residential units and additional dwellings were added on some parcels like the Stephenson’s doublewide lot at 4425 Clement. This resulted in a higher population density on the block over time.

Genealogical research and oral history confirmed that several former residents of this city block were related. One of the first families to take up residence was the Stephenson family. Robert and Elizabeth Stephenson and seven of their children—Margaret, Alice, Stanley, Charles F., William, Mary Ellen, and Thomas—immigrated to America from England in 1873. They purchased and settled on their property on the High Street block frontage by 1878 and operated a dairy there, according to the City Directory ([Oakland] 1878). By 1880 their three youngest children still lived at home (Mary Ellen, William, and Thomas), while Charles Stephenson was a servant in a San Francisco household. Margaret Stephenson married Norman J. Pryde in 1880 and by 1889 the couple purchased the lot around the corner at 4411 Clement, where they lived (Figures 4.4 and 4.5).

Table 4.2. Phase 2 Features

<table>
<thead>
<tr>
<th>Feature No.</th>
<th>Sampled?</th>
<th>Integrity</th>
<th>Contents</th>
<th>Age/TPQ</th>
<th>Association</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit 20 (refuse)</td>
<td>Yes</td>
<td>Disturbed by grading</td>
<td>Variety of artifacts</td>
<td>Ca. 1905</td>
<td>Stephenson Family</td>
<td>Eligible</td>
</tr>
<tr>
<td>Feature 21 (Brick pad)</td>
<td>N/A</td>
<td>Partially intact</td>
<td>N/A</td>
<td>Unknown</td>
<td>Stephenson Family</td>
<td>Ineligible</td>
</tr>
<tr>
<td>Feature 22 (brick footing)</td>
<td>N/A</td>
<td>Partially intact</td>
<td>N/A</td>
<td>Unknown</td>
<td>Stephenson Family</td>
<td>Ineligible</td>
</tr>
<tr>
<td>Privy 23</td>
<td>Yes</td>
<td>Truncated</td>
<td>Variety of artifacts</td>
<td>TPQ 1941</td>
<td>Stephenson Family</td>
<td>Eligible</td>
</tr>
<tr>
<td>Pit 24 (refuse)</td>
<td>Yes</td>
<td>Disturbed by grading</td>
<td>Variety of artifacts</td>
<td>Ca. 1905</td>
<td>Stephenson Family</td>
<td>Eligible</td>
</tr>
<tr>
<td>Pit 25 (refuse)</td>
<td>Yes</td>
<td>Intact</td>
<td>Sparse artifacts</td>
<td>?</td>
<td>Japanese tenants</td>
<td>Eligible</td>
</tr>
</tbody>
</table>

BLOCK OVERVIEW

The area that would later be designated as Oakland Block 2241 is shown on a map in the 1878 Thompson and West Atlas as the H. Robinson Tract (Figure 2.1 above). It was first used by the Pacific Cordage Company in the 1870s, followed by mixed residential and commercial uses starting in 1880 and gaining momentum by the 1890s. The archaeologically sensitive portion of the project area was converted to residences by the late 1890s. While specific lot histories are detailed below in Chapter 6, a noteworthy finding of this research involves the patterns of immigration over time. During initial settlement many related people purchased lots or resided in rental housing on the block, forming a closely-knit social aggregate. Then, in the period between the two world wars, Japanese immigrants came to comprise another significant population on Block 2241, as well as in the surrounding neighborhood.

Following the devastating 1898 explosion that destroyed most of the housing on Block 2241, many houses were rebuilt, as a 1912 Sanborn Company map reveals (Figure 2.4 above). A bird’s eye view of the Melrose neighborhood shows dense urban development throughout the surrounding area (Figure 4.3). While most of this block remained residential until the onset of the Great Depression, stables were converted to garages or secondary residential units and additional dwellings were added on some parcels like the Stephenson’s doublewide lot at 4425 Clement. This resulted in a higher population density on the block over time.

Genealogical research and oral history confirmed that several former residents of this city block were related. One of the first families to take up residence was the Stephenson family. Robert and Elizabeth Stephenson and seven of their children—Margaret, Alice, Stanley, Charles F., William, Mary Ellen, and Thomas—immigrated to America from England in 1873. They purchased and settled on their property on the High Street block frontage by 1878 and operated a dairy there, according to the City Directory ([Oakland] 1878). By 1880 their three youngest children still lived at home (Mary Ellen, William, and Thomas), while Charles Stephenson was a servant in a San Francisco household. Margaret Stephenson married Norman J. Pryde in 1880 and by 1889 the couple purchased the lot around the corner at 4411 Clement, where they lived (Figures 4.4 and 4.5).
By 1900 Robert Stephenson was a 75-year-old widower and Stanley, Charles, William, and Margaret were listed in his household on Block 2241. However, Margaret and her husband Norman Pryde and their children moved away from their former home at 4411 Clement (destroyed by the explosion in 1898) and were living in San Francisco by that time. Thus, she was just visiting her father. When the census was taken, Charles lived with his family at 4425-4433 Clement and was also visiting at that time. Stanley was divorced and lived in Berkeley, but William was single and may have lived with his father in 1900. Alice lived at the south end of the block with her husband, William Park, and their children while Mary Ellen was married to George Giblin and lived next to her father on the corner of High Street and Commerce.

Robert Stephenson resided in his home on High Street in Melrose until his death at age 77 in mid-December 1903 (Oakland Tribune 1903:6). His wife preceded him in death six years earlier according to the 1900 U.S. Census. Many of the family members continued to live on Block 2241 well into the 20th century. Alice married William Park around 1878 and had nine children born from 1879 to 1902. Over the years William worked as a bookkeeper and a stationary engineer, while the family rented premises at 24 (4420) Commerce from her brother Charles Stephenson. George and Mary Ellen Giblin never had children. They owned lots including 808 High Street in 1910 and 630 High Street in 1920 and 1930. In 1900 George worked as a clerk, but by 1910 he owned a dairy that was perhaps inherited from his father-in-law. The Giblin Dairy encompassed much of the corner of High and Commerce (Oakland Tribune 1913).

Margaret and her husband, Norman J. Pryde, had three children by the time they moved to 4411 Clement in 1889. At that time Margaret E. was 8, Donald E. was 6, and Georgina A. was just 4 years old. Norman worked as a smelter and later a chemist. Although the family
moved to San Francisco in 1900, they returned to a nearby neighborhood of Oakland just a few years later, taking up residence on Bellevue in 1903 according to city directories. Margaret operated a bakery on the premises and lived there with her two youngest children Georgina and Donald. Her husband Norman was not listed in the Oakland City Directory for that year, so it is uncertain if the couple were still married.

Charles F. Stephenson lived on the block for over five decades. He lived near his parents at the corner of High and Railroad Avenue by 1887. By 1899 he and his family lived on Clark, later designated 4425 Clement, in a house he owned, initially subject to a mortgage. Both Charles and Emily were born in England. Charles had immigrated in 1873 and Emily in 1889 just about when they would have married. They had four children by 1900: Walter, age 10; William, age 9; Amy, age 6; and Etta [Henrietta], age 3. The family grew to include Charles, born in 1902, and Gladys, born in 1905. In 1920 all of the children still lived at home except the two eldest daughters Amy and Henrietta. Amy married Elmer Criger, a box maker, in 1915 and they had a daughter May. Henrietta married Robert C. Scheile, a bank teller, around 1920 and they had two sons, Robert C. Jr. and Gordon Stanley. In 1930 only two children still lived at home, Walter J. and Charles. All the males in the family, when listed as working, were painters. Charles F. Stephenson lived on his Clement street property until his death in late December 1942 (*Oakland Tribune* 1942). His wife Emily preceded him in death in 1936 and the property passed to Walter (Alameda County Official Records 4128:453). By 1943 the inhabited

![Figure 4.4](image1.jpg)
Figure 4.4. Margaret Stephenson Pryde ca. 1880s (photo courtesy George W. Pryde).

![Figure 4.5](image2.jpg)
Figure 4.5. Norman J. Pryde ca. 1930 (photo courtesy George W. Pryde).
area on the property was acquired by Caltrans for the East Shore Highway (Alameda County Official Records 4452:461).

The Stephenson siblings were likely a tight knit group living on the same block for decades. The census records indicate the various families were interdependent. In 1910 George Giblin, likely a relative of Mary Ellen’s husband George Giblin, Jr., boarded with the Park family (U.S. Census 1910). In 1920, Charles F. Stephenson’s 23-year-old daughter Henrietta lived with her aunt and uncle, George and Mary Ellen Giblin (U.S. Census 1920). The Stephenson clan remained close for generations.

Japanese Residents on the High Street Tract by Dana Ogo Shew

Although the Japanese floral industry was established in the 1880s it was not until after World War I that Japanese families began setting up small nurseries on Blocks 2241 and 2242 in Oakland’s Melrose neighborhood. The 1910 U.S. Census shows that the residents of the High Street Tract were predominantly of European descent including Swedish, Danish, German, Scottish, and English. By 1920 the demographics of the tract were slowly becoming more diverse. The 1920 U.S. Census lists two Japanese families and one Portuguese family on the tract; two more Japanese families were living on surrounding blocks.

The Isokawa family lived on the High Street Tract in 1920. Tatsujiro and Yoshio Isokawa immigrated to the United States in 1909, bound for Oakland. By 1912 the couple was renting a home at 4331 Clement. Two years later on November 6, their son Ichiro was born. Yoshio stayed home to care for Ichiro while Tatsujiro worked as a clerk in a grocery store and eventually got into the import/export business. Although Tatsujiro passed away in 1930, Yoshio and Ichiro stayed in the house until forced to relocate to the Topaz Relocation Center in 1942. The Isokawas lived at 4331 Clement for 30 years, probably making them not only the first Japanese family to live on the High Street Tract but also the one that lived there for the longest amount of time. As one of the first Japanese families in the neighborhood they witnessed the transformation of the neighborhood, first building relationships with their mostly white neighbors and then welcoming the increasing number of Japanese families. The photographs provided by the Isokawa family reveal their attachment to their home and surroundings and give glimpses of life on Clement Street during the early part of the 20th century.

Another Japanese family who lived on Clement, just past 46th Avenue, was the Shirakis. The Shiraki family moved to 4601 Clement in 1924. From this address they operated the Shiraki Nursery, which they had moved from Alameda. The nursery was a family-run business, started in 1915 by the head of the family, Shinzo Shiraki (Figures 4.6 and 4.7). Shinzo was born in Japan in 1873 and immigrated to the United States in 1890. He held a variety of jobs including handyman, farm laborer, chef on the Southern Pacific Union, and clerk for a...
mercantile store owned by one of the Domoto brothers, where he was evidently influenced and guided towards starting his own nursery. Shinzo returned to Japan in 1909 to marry Miyomo Matsushima who immigrated to the United States two years later. They had four children: Kiyonobu (George) in 1911, Kiyotane (Harry) in 1913, Kiyoka (Mary) in 1915, and Michiko (Ruth) in 1929. The nursery stayed in business on Clement Street with the help of the three older Shiraki children for almost 20 years. The family grew dahlias, chrysanthemums, peonies, and many other types of flowers that Shinzo would deliver by bicycle to retailers around Oakland. The memories shared by the Shiraki’s youngest daughter, Ruth, give great insights into the relationships between Japanese and their neighbors on Clement Street as well as the work, sacrifice, and struggle involved with running a nursery (Ruth Shiraki, Jean Gize, and Ann Shiraki Farwell 2011, pers. comm.).

On Clement Street alone there were at least three families involved in the labor-intensive operation of the nursery business. In the surrounding neighborhood there were several other large nurseries including the Murata Nursery and Sunnyside Nursery & Florist, and probably many other backyard greenhouses. The Domoto Brothers’ original nursery was located in the Melrose district not too far from the High Street Tract but after 1920 it moved further southeast and other nurseries followed suit.

The families in the High Street Tract were on the outskirts of the area most densely populated with Japanese nurseries but this did not keep them from being actively involved in the Japanese American community. The Japanese community in the East Bay was largely based around the Oakland Buddhist Church located near Chinatown and the Japanese Methodist Church in West Oakland. Japanese immigrants built a strong, united, and active community in the Bay Area that established groups and clubs and organized activities and events relating to religious, cultural, and political aspects of life. The Japanese American children of immigrant parents also found a dual identity, participating in both Japanese cultural activities and being involved in American organizations such as the Boy Scouts. Pictures of Ichiro Isokawa in his

Figure 4.7. Shinzo Shiraki watering flowers at his nursery on Clement Street, 15 June 1941 (photo courtesy Jean Shiraki Gize).
Boy Scout uniform and with an American flag illustrate the pride many Japanese Americans and their first generation parents felt about United States citizenship (Figures 4.8 and 4.9).

Despite their involvement in the Japanese American community, the Japanese residents of the High Street Tract also had strong connections and relationships with their non-Japanese neighbors. Ruth Shiraki has many fond memories of the Caucasians who lived near her family home. Her childhood boyfriend, Peter Johnson, lived across the street and his nanny would generously offer food and treats when Ruth visited (Ruth Shiraki 2011, pers. comm.). Mrs. Segula also lived across the street and was everybody’s German “tunta” or auntie. Jessie Swingle eventually moved in after the Johnsons left and risked getting in trouble by the authorities when she insisted that she drive the family to the assembly center during relocation. Ichiro clearly also had friendly relationships with his neighbors as evidenced by a photograph of Ichiro and two non-Japanese girls standing on Clement Street (Figure 4.10). During excavation of the Stephenson property at 4425 Clement a delegate’s badge from the 42nd session of the Native Sons of the Golden West was
uncovered. Because the Native Sons took a very strong and vocal anti-Japanese stance in the years leading up to and during WWII, it may indicate that the Stephenson family was not one of the families on Clement Street that had friendly and amicable relationships with their Japanese neighbors. However, no oral accounts indicate that the Stephenson family shared the anti-Japanese sentiments espoused by the Native Sons or how their involvement in the organization affected their relationship with their neighbors. Ruth Shiraki’s memories of other non-Japanese neighbors are so poignantly positive it is easy to imagine that the whole neighborhood shared the same amiable and friendly relationships that her family did with its neighbors.

The Japanese families in this community also shared friendly relationships with each other. The Isokawa photographs show Ichiro playing with other Japanese American children in the neighborhood (Figure 4.11). A few of the photographs were likely taken in the neighbor’s yard in front of their greenhouses; the house on the other side of the fence may be the Isokawa residence. Ruth Shiraki also remembers the kindness of other Japanese families in the area. Mrs. Mizoguchi of the Mizoguchi Nursery on High Street would always have canisters of cookies and Japanese crackers on hand to share with Ruth. She remembers Mrs. Orimoto and her sister, Mrs. Fujimori growing green onions on the Orimoto farm next door and riding on the big wooden board pulled by a horse to flatten the fields after plowing (Ruth Shiraki 2011, pers. comm.). Though there was undoubtedly a sense of support and unity between Japanese families in this neighborhood, Ruth felt a closer bond between herself and the non-Japanese neighbors across the street, which reveals intriguing aspects of identity construction.

The Japanese families who lived on the High Street Tract not only played a significant role in shaping the history of the neighborhood but also reflected trends and truths about the larger Japanese population in the East Bay. They exemplified the predominant occupations of the Japanese, sharing many of the same struggles and obstacles, and they were part of the strong support network of the Japanese community. But the families on this street also created their own story. The families on Clement Street lived at different levels of wealth from shack like dwellings next to greenhouses to well kept two story homes. They developed strong friendships with their neighbors. They shared the street with manufacturing companies, mills and oil yards. Their children played in open fields near the railroad tracks and PG&E storage tanks, the Clorox Factory never too far from view (Figure 4.12).

The High Street Tract was undoubtedly an interesting place to live. Founded as a commercial and industrial zone, it transitioned to a residential neighborhood that evolved into a diverse district of Japanese families and nurseries, and was eventually reclaimed by
its industrial roots and the expansion of transportation. Though the Japanese chapter of this neighborhood’s history was a brief 30 years, it is important in the history of Japanese and Japanese American settlement, and provides a revealing glimpse into the lives of Japanese Americans from before WWI to the time of internment.

Figure 4.11. Ichiro Isokawa and next door neighbor ca. 1922 (photo courtesy Ned Isokawa).
Figure 4.12. Isokawa family photos ca. 1917 to 1922 plotted on Sanborn maps (1925). (Photos courtesy of Ned Isokawa)