Delay Tolerant Networks: Challenges and Applications

Dr. Farid Farahmand

The Advanced Internet Technology in the Interests of Society Laboratory
Presentation Outline

• Future networks & their characteristics
• Delay tolerant networks
• Our research focus in DTN
• Open research areas in DTN
• Available resources
Basic Applications and Networks

- The Internet: the largest network
 - Interconnecting communication devices across the globe using TCP/IP protocol suite
 - Designed based on a number assumptions.....
Guaranteed end-to-end connectivity
Short and fixed delays
Symmetric data rates
Low error rates
Existing Infrastructure
Emerging Networks and Apps

- Connecting heterogeneous networks operating on different transmission media
 - Different protocols and characteristics
- Communication is not limited to the Internet
 - Violating many of basic assumptions in the Internet....
Guaranteed end-to-end connectivity
Short and fixed delays
Symmetric data rates
Low error rates
Existing infrastructure
Future Networks

- Node constraints
 - Highly integrated, low-power, low-cost devices
- Network dynamics
 - Host mobility, network mobility, dynamic membership,
- No guaranteed end-to-end connectivity
 - Link and node failures \rightarrow network with intermittent connectivity
- Long & variable propagation delays
 - Asymmetric data rates
- Heterogenous networks seamlessly connected
 - Decentralized
Delay Tolerant Networks
D* Tolerant Networks

- Disruption
- Delay
- Disconnection

When TCP Breaks: Turn to Delay- and Disruption-Tolerant Networking

Delay-Tolerant Networking Architecture,” RFC 4838, April 2007. V. Cerf et al.,
Network Examples of DTN

- Vehicular Networks
 - DakNet
 - Message ferry
 - Village network
- Mule Networks
 - Zebranet
 - The goal is tracking of zebras in wildlife
 - Sámi Network Connectivity
 - Carrier Pigeons
 - RFC 1149, RFC 2549 - Implemented by Bergen Linux users group
Network Examples of DTN

- Inter Planetary Networks
 - Deep space networks
- Sensor Networks
 - Acoustic underwater networks
- Ad hoc Networks (MANET)
 - Military tactical networks

DTN Architectural Objectives

- Asynchronously interconnecting different networks
 - Network of regional networks
- Each networks can have
 - Arbitrary underlying technologies
 - Different administrative controls
 - No accessible infrastructure
Bundle Concept

- Use of bundles instead of packets
- Bundle store & forward-routing
- Custody transfer by intermediate nodes

DTN Origin

- Interplanetary Internet (IPI)
 - Development since late 1990s
 - Expanding internetworking to interplanetary scale

Pre-standardization efforts: DTN Research Group (DTN RG) in the IRTF

www.computer.org/.../dsontline/2006/08/w4spot.xml
Network Constraints

- Application
 - → Monitoring, communications, etc.,
- Node types and interactions
 - → Mobile nodes, stationary nodes
- Mobility patterns
 - → Deterministic, stochastic, predictable, etc.
- Network topology
 - → Known or not
- Scheduling Assumptions
 - → Knowledge oracle type
- Energy level constraint
 - → Similar to sensor network
- Physical constraints
 - → Bandwidth, range, speed, etc.

(N=Node, MR=Mobile Node)
Our Research Focus
Challenges

• Architecture
 - Naming and addressing

• Routing protocols
 - Traditional end-to-end path may not exist
 - End-to-end routing will not work
 - Routes maybe time dependent

• Multi-layer connectivity
 - Interconnecting DTNs

• Node design
 - Storage capacity, range, physical link
A) Vehicular DTN - Village Networks

- Expanding connectivity
 - Lack of infrastructure
 - Lack of funding
- Villages and remote areas
- Network architecture
 - Stationary nodes
 - Mobile routers
 - Relay nodes - placed at intersections
A) Vehicular DTN - Village Networks

Objective
Network cost optimization by minimizing the number of relay nodes

Problem
- Relay node placement to reduce network cost
- Developing various routing algorithms

Solution
Formulating the node placement as a cost optimization problem (ILP Problem) & developing heuristic algorithms
B) Vehicular DTN - Multi-Layer Interactions

- **Motivation**
 - Protecting against catastrophic (regional) failures
- **Cross-layer interaction**
 - Integrating VDTN and other network layers
 - In-bad and out-of-band signaling
 - Using different media for data and control signals
B) Vehicular DTN - Multi-Layer Interactions

- Innovative applications
 - Distance learning
 - eHealth
C) Anycasting in VDTN

- Inter and intra-domain traffics
- Intra-domain traffic can go through ISPA or ISPB
- Objective
 - Optimizing the network to reduce cost (ILP formulation)
 - Designing heuristics
Supports & Collaborations

• Funding Supports
 - The Euro-NF Network of Excellence of Seven Framework Programme of EU
 - Networks and Multimedia Group of the Institute of Telecommunications - Covilhã Lab, Portugal

• Collaborating Institutions
 - Central Connecticut State University
 - Institute of Telecommunications, Networks and Multimedia Group, Portugal
 - University of Texas at Dallas
 - Scuola Superiore Sant’Anna, Pisa, Italy
Open Research Areas
Naming and Addressing

- Unique end-point identifiers \{region id, host id\}
 - Defining regions
- Supporting unicasting, multicasting, anycasting
 - Shared addresses for multiple nodes
- The end user may be mobile and move between regions
 - Address mapping or resolution needed
 - Routing takes place based upon complete URI: sender “just sends”
Routing in DTN

- Routing depends on basic network assumptions
 - Mobility, mobility patterns, node capacity, scheduling knowledge, etc.
- Routes are time dependent
 - Requires long term storage
 - Long term storage can lead to buffer contention
- Routing objectives
 - Minimize the delay
 - Maximize the throughput
- Topology dynamics
 - Is the topology known (e.g., road, mobility patterns, etc.)
- Optimal routing solutions
 - Knowledge vs complexity

- Contacts Summary
 - Average link availability
 - Average bandwidth
- Contacts
 - Exact times of contact
 - Exact route
- Buffering
 - Available storage
 - Local vs Global
- Traffic Demand Oracle
Open Research Areas
Exact Vs. Partial Scheduling

- Show through simulation the relative performance between routing based on exact and partial scheduling information
 - Implementing the time-based shortest path: modified Dijkstra's Algorithm
- The general performance of the two routing algorithms can be expected to be as follow

Input: $G=(V,E), s, T, w(e,t)$
T: Start time
$w (e,t)$: edge cost function
Output: $L[u]$
The earliest time message reaches node u

Properties:
- Loop free paths
- Low complexity

Algorithm:
- $Q = V$
- $L[s] = 0, L[v] = ∞ \forall v \in \{V - s\}$
- while $Q \neq \emptyset$ do
 - Let $u \in Q, s.t L[u] = \min_{x \in Q} L[x]$
 - $Q = Q - \{u\}$
 - forall $e \in E, s.t. e = (u,v)$ do
 - if $L[v] > L[u] + w(e, L[u] + T)$ then
 - $L[v] = L[u] + w(e, L[u] + T)$
 - end
 - end

Performance of Contact Time Oracle Routing
Performance of average contact period oracle

More..... click here
Open Research Areas
Multicasting efficiency in VDTN

- Multicasting is the simultaneous transmission of data from a source to a group of destinations
 - Warning system
 - Distance learning
- Maintaining reliable transmission in a timely manner is very critical
- Objective
 - Reducing resource demand of the application (storage, link utilization, etc.)
 - Minimizing the delivery time
- A common approach in route selection is link-sharing in the tree structure
 - Developing the time-variant Steiner multicast tree (TV-SMT) used for routing data in the network
Open Research Areas
Multi-layer Survivability

- Networks with mechanical backbone or limited energy levels can be highly susceptible to failures
 - Mechanical failures in buses, road blocks, traffic jams, etc.

- VDTN networks can also be considered as an alternative approach offer protection against catastrophic failures
LEGO Mindstorms Platform

• Motivation
 - Examining performance
 • Different protocols,
 • Examine blocking and constraints

• Possible extensions
 - Using GPS
 - Understanding random movements
 - Utilizing different link layer technology
 - Creating a colony network
 - Utilizing PDAs
 - Communication overheads

Lego Project: http://www.sm.luth.se/csee/courses/smd/147/pages05/projects/DTN_PROPHET_LEGO_project.pdf
Available Resources....
References

- http://www.cs.wmich.edu/wns/project_opppnet.html - Opportunistic Networks - Leszek Lilien
References

References

References

Conferences

- WDTN Workshop Technical Program - http://www.sigcomm.org/sigcomm2005/w4-wdtn.html - papers all available

- Other wireless conferences - http://www.prehofer.de/Research/Welcome.html

- IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks - http://ieee-wowmom.cse.buffalo.edu/

-
Seminars / Universities

• Prof. Jens-Peter Redlich - Interplanetary Internet - http://sar.informatik.hu-berlin.de/teaching/_previous-years/2006-s%20Interplanetary%20Internet%20Seminar/index.htm

• Dr.-Ing. Dirk Kutscher - DTN http://www.tzi.de/~dku/research.html
Online Resources

- The Consultative Committee for Space Data Systems (CCSDS) - (deep space communication)
 http://public.ccsds.org/default.aspx
- Magic Bike Project - http://www.magicbike.net/
- The Delay-Tolerant Networking Research Group (DTNRG) - http://www.dtnrg.org/wiki
- Mitre Projects
SIMULATORS

- **DTNSIM2**
 https://styx.uwaterloo.ca/dtnsim2/

- **A very good list of simulators**
Internet to Rural Access

- Wizzy Project - South Africa -
 http://www.wizzy.org.za/link/category/5/
- TIER Project -
 http://tier.cs.berkeley.edu/wiki/Home - The aim of the TIER project is to address the challenges in bringing the Information Technology revolution to the masses of the developing regions of the world
- United Villages http://www.unitedvillages.com/

An online list: http://del.icio.us/faridfarahmand/rural